Naturwissenschaften

, Volume 100, Issue 7, pp 683–689 | Cite as

Ancient pests: the season of the Santorini Minoan volcanic eruption and a date from insect chitin

  • Eva Panagiotakopulu
  • Thomas Higham
  • Anaya Sarpaki
  • Paul Buckland
  • Christos Doumas
Original Paper

Abstract

Attributing a season and a date to the volcanic eruption of Santorini in the Aegean has become possible by using preserved remains of the bean weevil, Bruchus rufipes, pests of pulses, from the storage jars of the West House, in the Bronze Age settlement at Akrotiri. We have applied an improved pre-treatment methodology for dating the charred insects, and this provides a date of 1744–1538 BC. This date is within the range of others obtained from pulses from the same context and confirms the utility of chitin as a dating material. Based on the nature of the insect material and the life cycle of the species involved, we argue for a summer eruption, which took place after harvest, shortly after this material was transported into the West House storeroom.

Keywords

Minoan eruption Radiocarbon dating Insect pests Coleoptera 

Supplementary material

114_2013_1068_Fig6_ESM.jpg (16 kb)
ESM 1

Photograph of the West House, Akrotiri, Santorini (JPEG 15 kb)

114_2013_1068_MOESM1_ESM.tif (6.8 mb)
High resolution image(TIFF 6981 kb)
114_2013_1068_MOESM2_ESM.doc (27 kb)
ESM 2Radiocarbon dates from pithos 1, Room 5, West House, Akrotiri (DOC 27 kb)
114_2013_1068_Fig7_ESM.jpg (101 kb)
ESM 3

Bayesian radiocarbon calibrated calendar age probability histogram based on the dates from pulses and bruchid from a single context pithos 1, south wall, Room 5, West House. This coincides with the destruction of the settlement. The diagram shows the four determinations in a single-phase model, in which the results are unordered but assume the same start and end date for the archaeological event. The dark outlines are the posterior probability distributions after Bayesian modelling. The date obtained on the olive branch by Friedrich et al. (2006) is shown as a calendar date ranging from 1600–1627 at 95.4 % probability. There are no outliers in the model (JPEG 100 kb)

114_2013_1068_MOESM3_ESM.eps (688 kb)
High resolution image(EPS 688 kb)
114_2013_1068_MOESM4_ESM.doc (26 kb)
ESM 4Bruchid infestation on Lathyrus clymenum, Room 5, West House (DOC 26 kb)

References

  1. Anton K-W, Halperin J, Calderon M (1997) An annotated list of the Bruchidae (Coleoptera) of Israel and adjacent areas. Isr J Entomol 3:59–96Google Scholar
  2. Borowiec L (1987) The genera of seed-beetles (Coleoptera, Bruchidae) Polsk Pismo. Entomology 57:3–207Google Scholar
  3. Borowiec L, Anton K-W (1993) Materials to the knowledge of seed beetles of the Mediterranean Sub-region (Coleoptera, Bruchidae). Annals of Upper Silesian Museum. Entomology 4:99–152Google Scholar
  4. Braadbaart F, van Bergen PF (2005) Digital imaging analysis of size and shape of wheat and pea upon heating under anoxic conditions as a function of the temperature. Veg Hist Archaeobotany 14:67–75CrossRefGoogle Scholar
  5. Brandl P (1981) Bruchidae. In: Freude H, Hard KW, Lohse GA (eds) Die Käfer Mitteleuropas, 10. Goecke & Evers, Krefeld, pp 7–21Google Scholar
  6. Bronk Ramsey C (1995) Radiocarbon calibration and analysis of stratigraphy: the OxCal programme. Radiocarbon 37:425–443Google Scholar
  7. Coope GR, Osborne PJ (1968) Report on the Coleopterous Fauna of the Roman well at Barnsley Park, Gloucestershire. Trans Bristol Gloucs Archaeol Soc 86:84–87Google Scholar
  8. Costantini L, Costantini Biasani L (2010) Archaeobotany. In: Morter J The Chora of Croton: v. 1: The Neolithic Settlement at Capo Alfiere. University of Texas Press, pp 175–189Google Scholar
  9. Cox ML (2001) Notes on the natural history, distribution and identification of seed beetles (Bruchidae) of Britain and Ireland. Coleopterist 9:113–147Google Scholar
  10. Cox ML (2007) Atlas of the seed and leaf beetles of Britain and Ireland. Pisces Publ, NewburyGoogle Scholar
  11. Delobel B, Delobel A (2006) Dietary specialisation in European species groups of seed beetles (Coleoptera: Bruchidae: Bruchinae). Oecologia 149:428–443PubMedCrossRefGoogle Scholar
  12. Dönmez EO (2005) Early Bronze Age crop plants from Yenibademli Höyük (Gökçeada), Western Turkey. Environ Archaeol 10:39–49CrossRefGoogle Scholar
  13. Doumas C (1983) Thera, Pompeii of the ancient Aegean: excavations at Akrotiri, 1967. Thames and Hudson, New YorkGoogle Scholar
  14. Doumas CG (1992) The Wall-Paintings of Thera. The Thera Foundation, AthensGoogle Scholar
  15. Doumas C (2008) Ακρωτήρι Θήρας. Τριάντα χρόνια έρευνας (1967–1997). Επιστημονική συνάντηση 19–20 Δεκεμβρίου 1997 Η εν Αθήναις Αρχαιολογική Εταιρεία) Βιβλιοθήκη της εν Αθήναις Αρχαιολογικής Εταιρείας αρ. 246Google Scholar
  16. Friedrich WL, Kromer B, Friedrich M, Heinemeier J, Pfeiffer TS, Talamo S (2006) Santorini Eruption radiocarbon dated to 1627–1600 BC. Science 312Google Scholar
  17. Genduso P (1960) Observations on the Bruchids of lentil (Lens esculenta Moench). 1st note. Bruchus lentis Fröel.-Bruchus ervi Fröel. Boll Ist Ent agr Palermo 10:139–162Google Scholar
  18. Genduso P (1976) Insects injurious to legumes in Sicily and observations on the overwintering of univoltine bruchids. Boll Ist Entomologia Agrar Osservatorio Fitopatol Palermo 1980(10):169–176Google Scholar
  19. Hedges REM, Housley RA, Bronk CR, van Klinken GJ (1990) Radiocarbon dates from the Oxford AMS system: Archaeometry Datelist 11. Archaeometry, 32:211–237Google Scholar
  20. Heinemeier J, Friedrich WL, Kromer B, Bronk Ramsey C (2009) The Minoan eruption of Santorini radiocarbon dated by an olive tree buried by the eruption. In: Warburton DA (ed) Time’s Up! Dating the Minoan eruption of Santorini. Acts of the Minoan Eruption Chronology Workshop, Sandbjerg November 2007. Monographs of the Danish Institute at Athens, Volume 10. Aarhus University Press, pp. 285–293Google Scholar
  21. Helbaek H (1970) The plant husbandry of Hacilar. In: Mellaart J (ed) Excavations at Hacilar. Edinburgh University Press, Edinburgh, pp 189–244Google Scholar
  22. Hill D (2009) Agricultural Entomology. Timber Press, PortlandGoogle Scholar
  23. Hodgins GWL, Thorpe JL, Coope GR, Hedges REM (2001) Protocol development for purification and characterization of sub-fossil insect chitin for stable isotopic analysis and radiocarbon dating. Radiocarbon 43:199–208Google Scholar
  24. Housley RA, Hedges REM, Law IA, Bronk Ramsey C (1990) Radiocarbon dating by AMS of the destruction of Akrotiri. In: Hardy DA, Renfrew AC (eds) Thera and the Aegean World III. Chronology. Proceedings of the Third International Congress. Thera Foundation, London pp. 207–215Google Scholar
  25. Johnston EN, Philips JC, Bonnadona C, Watson IM (2012) Reconstructing the tephra dispersal pattern from the Bronze Age eruption of Santorini using an advection–diffusion model. Bull Volcanol 74:1485–1507CrossRefGoogle Scholar
  26. Kergoat GJ, Silvain J-F, Delobel A, Tuda M, Anton K-W (2007) Defining the limits of taxonomic conservatism in host-plant use for phytophagous insects: molecular systematics and evolution of host-plant associations in the seed-beetle genus Bruchus Linnaeus (Coleoptera: Chrysomelidae: Bruchinae). Mol Phylogenet Evol 43:251–269PubMedCrossRefGoogle Scholar
  27. Kroll H (1982) Kulturpflanzen von Tiryns. Archäologischer Anzeiger, 467–485Google Scholar
  28. Kroll H (1983) Kastanas. Ausgrabungen in einem Siedlungshügel der. Bronze- und Eisenzeit Makedoniens, 1975–1979: Die Pflanzenfunde. Prähistorische Archäologie in Südosteuropa 2. Volker Spiess, BerlinGoogle Scholar
  29. MacGillivray JA (2009) Thera, Hatsepsut and the Keftiu: crisis and response. In: Warburton DA (ed) Time’s Up! Dating the Minoan eruption of Santorini. Acts of the Minoan Eruption Chronology Workshop, Sandbjerg November 2007. Monographs of the Danish Institute at Athens, Volume 10. Aarhus University Press, pp. 155–170Google Scholar
  30. Manning SW, Kromer B (2011) Radiocarbon dating archaeological samples in the Eastern Mediterranean, 1730 to 1480 BC: further exploring the atmospheric radiocarbon calibration record and the archaeological implications. Archaeometry 53:413–439CrossRefGoogle Scholar
  31. Manning SW, Ramsey CB, Kutschera W, Higham T, Kromer B, Steier P, Wild EM (2006) Chronology for the Aegan Late Bronze Age 1700–1400 BC. Science 312:565–569PubMedCrossRefGoogle Scholar
  32. McClelland E, Druitt TH (1989) Palaeomagnetic estimates of emplacement temperatures of pyroclastic deposits on Santorini, Greece. Bull Volcanol 51:16–27CrossRefGoogle Scholar
  33. Medjdoub-Bensaad F, Khelil MA, Huignard J (2007) Bioecology of broad bean bruchid Bruchus rufimanus Boh. (Coleoptera: Bruchidae) in a region of Kabylia in Algeria African. J Agric Res 2:412–417Google Scholar
  34. Meyer FG (1980) Carbonised food plants of Pompeii, Herculaneum and the Villa at Torre Annunziata. Econ Bot 34:401–437CrossRefGoogle Scholar
  35. Nukenine EN (2010) Stored product protection in Africa: past, present and future. Julius-Kühn-Archiv 425:26–41Google Scholar
  36. Oliva A (1939) I frumenti, le leguminose da granella e gli altri semi repertati a Belverde. Studi Etruschi 13:343–349Google Scholar
  37. Panagiotakopulu E (2000) Archaeology and Entomology in the Eastern Mediterranean. British Archaeol Rep International Ser 836Google Scholar
  38. Panagiotakopulu E, Buckland PC (1991) Insect pests of stored products from Late Bronze Age Santorini, Greece. J Stored Prod Res 27:179–184CrossRefGoogle Scholar
  39. Panagiotakopulu E, Buckland PC, Day P, Sarpaki A, Doumas C (1995) Natural insecticides and insect repellents in antiquity: a review of the evidence. J Archaeol Sci 22:705–710CrossRefGoogle Scholar
  40. Panagiotakopulu E, Higham, T, Tripp, J, Buckland, PC, Hedges, REM (2013) Problems of AMS dating of insect chitin, a discussion of new dates. Unpubl file report, Oxford, Oxford Accelerator UnitGoogle Scholar
  41. Pelekassis CED (1962) A catalogue of the more important insects and other animals harmful to the agricultural crops of Greece during the last thirty-year period. Annales de l' Institut Phytopathologie Benaki (Nouvelle Serie) 55 104ppGoogle Scholar
  42. Pfaffenberger GS, Johnson CD (1976) Biosystematics of the first-stage larvae of some North American Bruchidae (Coleoptera). Agricultural Research Service (US). Tech Bull 1525:1–75Google Scholar
  43. Pinto da Silva AR (1943) Nota acerca das sementes incarbonizadas recolhidas na Póvoa eneolítica de Vila Nova de São Pedro. Brotéria 37:19–20Google Scholar
  44. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr G, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1111–1150Google Scholar
  45. Riehl S (1999) Bronze Age environment and economy in the Troad: the archaeobotany of Kumtepe and Troy. BioArchaeologica 2. Mo-Vince-Verlag, TübingenGoogle Scholar
  46. Sarpaki AA (1987) The palaeoethnobotany of the West House Akrotiri, Thera : a case study. PhD thesis, Sheffield UniversityGoogle Scholar
  47. Sarpaki A, Jones G (1990) Ancient and modern cultivation of Lathyrus clymenum in the Greek islands. Annu Brit Sch Athens 85:363–368CrossRefGoogle Scholar
  48. Sewell DA (2001) Earth, Air, Fire and Water. An elemental analysis of the Minoan eruption of Santorini volcano. PhD thesis, Reading UniversityGoogle Scholar
  49. Southgate BJ (1979) Biology of the Bruchidae. Annu Rev Entomol 24:449–473CrossRefGoogle Scholar
  50. Tripp J, Higham TFG, Hedges REM (2004) A pre-treatment procedure for the AMS radiocarbon dating of sub-fossil insect remains. Radiocarbon 46:147–154Google Scholar
  51. Tuda M (2011) Evolutionary diversification of bruchine beetles: climate-dependent traits and development associated with pest status. Bull Entomol Res 101:415–422PubMedCrossRefGoogle Scholar
  52. Walker MJC, Bryant C, Coope GR, Harkness DD, Lowe JJ, Scott EM (2001) Towards a radiocarbon chronology of the Late-Glacial: sample selection strategies. Radiocarbon 43:1007–1019Google Scholar
  53. Weiss E, Kislev ME, Hartmann A (2006) Autonomous cultivation before domestication. Science 312:1608–1610PubMedCrossRefGoogle Scholar
  54. Zohary D, Hopf M (1973) Domestication of pulses in the Old World. Science 182:887–894PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eva Panagiotakopulu
    • 1
  • Thomas Higham
    • 2
  • Anaya Sarpaki
    • 3
  • Paul Buckland
    • 4
  • Christos Doumas
    • 5
  1. 1.School of GeoSciencesUniversity of EdinburghEdinburghUK
  2. 2.Oxford Radiocarbon Accelerator UnitResearch Laboratory for Archaeology and the History of ArtOxfordUK
  3. 3.SoudaGreece
  4. 4.SheffieldUK
  5. 5.Department of Archaeology and History of ArtUniversity of AthensAthensGreece

Personalised recommendations