, Volume 100, Issue 8, pp 795–799

A survey of DNA methylation across social insect species, life stages, and castes reveals abundant and caste-associated methylation in a primitively social wasp

  • Susan A. Weiner
  • David A. Galbraith
  • Dean C. Adams
  • Nicole Valenzuela
  • Fernando B. Noll
  • Christina M. Grozinger
  • Amy L. Toth
Short Communication


DNA methylation plays an important role in the epigenetic control of developmental and behavioral plasticity, with connections to the generation of striking phenotypic differences between castes (larger, reproductive queens and smaller, non-reproductive workers) in honeybees and ants. Here, we provide the first comparative investigation of caste- and life stage-associated DNA methylation in several species of bees and vespid wasps displaying different levels of social organization. Our results reveal moderate levels of DNA methylation in most bees and wasps, with no clear relationship to the level of sociality. Strikingly, primitively social Polistes dominula paper wasps show unusually high overall DNA methylation and caste-related differences in site-specific methylation. These results suggest DNA methylation may play a role in the regulation of behavioral and physiological differences in primitively social species with more flexible caste differences.


Epigenetics DNA methylation Hymenoptera Eusociality Vespidae Phenotypic plasticity 

Supplementary material

114_2013_1064_MOESM1_ESM.pdf (1.5 mb)
ESM 1(PDF 1533 kb)


  1. Bonasio R, Zhang G, Ye C, Mutti NS, Fang X, Qin N, Donahue G et al (2010) Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 329:1068–1071PubMedCrossRefGoogle Scholar
  2. Bonasio R, Li QY, Lian JM, Mutti NS, Jin LJ, Zhao HM, Zhang P, Wen P, Xiang H, Ding Y, Jin ZH, Shen SS, Wang ZJ, Wang W, Wang J, Berger SL, Liebig J, Zhang GJ, Reinberg D (2012) Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr Biol 22:1755–1764PubMedCrossRefGoogle Scholar
  3. Chen Y, Sharma RP, Costa RH, Costa E, Grayson DR (2002) On the epigenetic regulation of the human reelin promoter. Nucleic Acids Res 30:2930–2939PubMedCrossRefGoogle Scholar
  4. Crews D (2008) Epigenetics and its implications for behavioral neuroendocrinology. Front Neuroendocrinol 29:344–357PubMedCrossRefGoogle Scholar
  5. Elango N, Hunt BG, Goodisman MAD, Yi SV (2009) DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proc Natl Acad Sci U S A 106:11206–11211PubMedCrossRefGoogle Scholar
  6. Herb BR, Wolschin F, Hansen KD, Aryee MJ, Langmead B, Irizarry R, Amdam GV, Feinberg AP (2012) Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat Neurosci 15:1371–1373PubMedCrossRefGoogle Scholar
  7. Hines HM, Hunt JH, O'Connor TK, Gillespie JJ, Cameron SA (2007) Multigene phylogeny reveals eusociality evolved twice in vespid wasps. Proc Natl Acad Sci U S A 104:3295–3299PubMedCrossRefGoogle Scholar
  8. Jimenez-Chillaron JC, Diaz R, Martinez D, Pentinat T, Ramon-Krauel M, Ribo S, Plosch T (2012) The role of nutrition on epigenetic modifications and their implications on health. Biochimie 94:2242–2263PubMedCrossRefGoogle Scholar
  9. Kronforst M, David G, Joan S, David Q (2006) DNA methylation is widespread across social hymenoptera. Curr Biol 18:R287–R288CrossRefGoogle Scholar
  10. Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827–1830PubMedCrossRefGoogle Scholar
  11. Lockett, GA, Helliwell, P, Maleszka R (2010) Involvement of DNA methylation in memory processing in the honey bee. Neuroreport 12:812–816Google Scholar
  12. Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R (2010) The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 8:e1000506PubMedCrossRefGoogle Scholar
  13. Moczek A, Snell-Rood E (2008) The basis of bee-ing different: the role of gene silencing in plasticity. Evol Dev 10:511–513PubMedCrossRefGoogle Scholar
  14. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  15. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093PubMedCrossRefGoogle Scholar
  16. Ross KG, Matthews RW (1991) The social biology of wasps. Ithaca, New YorkGoogle Scholar
  17. Shi YY, Wei YY, Huang ZY, Wang ZL, Wu XB, Zeng ZJ (2013) Genomewide analysis indicates that queen larvae have lower methylation levels in the honey bee (Apis mellifera). Naturwissenschaften 100:193–197PubMedCrossRefGoogle Scholar
  18. Smith, CR, Smith, CD, Robertson, HM, Helmkampf, M et al. (2011) Draft genome of the red harvester ant Pogonomyrmex barbatus. Proc Natl Acad Sci USA 108:5667–5672Google Scholar
  19. Smith CR, Mutti NS, Jasper WC, Naidu A, Smith CD, Gadau J (2012) Patterns of DNA Methylation in development, division of labor and hybridization in an ant with genetic caste determination. PLoS One 7:e42433PubMedCrossRefGoogle Scholar
  20. Szyf M, McGowan P, Meaney MJ (2008) The social environment and the epigenome. Environ Mol Mutagen 49:46–60PubMedCrossRefGoogle Scholar
  21. Walsh TK, Brisson JA, Robertson HM, Gordon K, Jaubert-Possamai S, Tagu D, Edwards OR (2010) A functional DNA methylation system in the pea aphid, Acyrthosiphon pisum. Insect Mol Biol 19:215–228PubMedCrossRefGoogle Scholar
  22. Weaver ICG, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854PubMedCrossRefGoogle Scholar
  23. Weiner SA, Toth AL (2012) Epigenetics in social insects: a new direction for understanding the evolution of castes. Genet Res Int 2012:609810PubMedGoogle Scholar
  24. West-Eberhard, MJ (2003) Developmental plasticity and evolution. Oxford University Press.Google Scholar
  25. Zapala MA, Schork NJ (2006) Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc Natl Acad Sci U S A 103:19430–19435PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Susan A. Weiner
    • 1
  • David A. Galbraith
    • 2
  • Dean C. Adams
    • 1
    • 3
  • Nicole Valenzuela
    • 1
  • Fernando B. Noll
    • 4
  • Christina M. Grozinger
    • 2
  • Amy L. Toth
    • 1
    • 5
  1. 1.Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesUSA
  2. 2.Department of Entomology, Center for Pollinator ResearchPennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of StatisticsIowa State UniversityAmesUSA
  4. 4.Depto. de Zoologia e BotânicaIBILCE-UNESPSão José do Rio PretoBrazil
  5. 5.Department of EntomologyIowa State UniversityAmesUSA

Personalised recommendations