Advertisement

Naturwissenschaften

, Volume 100, Issue 7, pp 645–658 | Cite as

Genetic structure and different color morphotypes suggest the occurrence and bathymetric segregation of two incipient species of Sebastes off Argentina

  • Leonardo A. Venerus
  • Javier E. Ciancio
  • Carla Riva-Rossi
  • Elizabeth A. Gilbert-Horvath
  • Atila E. Gosztonyi
  • John Carlos Garza
Original Paper

Abstract

Rockfishes of the genus Sebastes are extensively distributed in the Pacific and Atlantic oceans. Although the occurrence of two morphologically similar species in the Southern Hemisphere, Sebastes oculatus and Sebastes capensis, is now clearly established, the taxonomic status and phylogeographic patterns for the genus in the region have not yet been completely resolved. In this study, we provide new insights into the taxonomy and evolutionary relationships of rockfishes inhabiting the Southwestern Atlantic Ocean, off the coast of mainland Argentina, by combining mitochondrial DNA (mtDNA) control region sequences, microsatellite data, and color pattern analyses. Differences in coloration (“dark” and “light” fish) together with bathymetric segregation between color morphotypes were evident from fish collection and literature review. In addition, the mtDNA phylogenetic analysis and Bayesian clustering analysis using microsatellite data separated the fish into two distinct groups (F ST = 0.041), most likely representing incipient species. Our results suggest that speciation-by-depth in the absence of physical barriers could be a widespread mechanism of speciation in Sebastes from both the Northern and Southern Hemispheres. Nevertheless, the degree of genetic differentiation found, added to the large number of individuals displaying high levels of admixture, points to the occurrence of incomplete reproductive barriers between color morphotypes. Beyond the taxonomic and phylogeographic implications of our findings, the occurrence of distinct groups of Sebastes off the coast of Argentina being targeted by different fisheries (angling and trawling) has consequences for the design and implementation of appropriate fishery regulations to avoid overharvest of either group.

Keywords

Sebastidae Phylogeography Rocky reef fish Incomplete reproductive isolation Incipient speciation Morphotypes 

Notes

Acknowledgments

We thank “Gringo” Durbas, M. San Emeterio, D. Galván, M. Delpiani, C. Fulvio Pérez, P. Useglio, G. Trobbiani, M. Trivellini, L. Rojas, L. Getino, M. López, L. Villanueva, J. Lancelotti, R. Kosaka, V. Apkenas, C. Columbus, R. Díaz, and the crew and scientific staff on board R/V “Puerto Deseado” for their help in the field or in the laboratory and/or for sample collection. Y. Huenchual, R. Huenchul, and E. Bahamonde helped us during the monitoring of Fiesta Nacional del Salmón de Mar (Camarones). N. Basso and M. Iglesias collaborated in mtDNA sequencing. We greatly appreciate the comments, photographs, and additional data generously provided by A. Rocha-Olivares, W. Eschmeyer, Y. Kai, J. Hyde, N. Muto, P. Heemstra, A. Irigoyen, “Lobo” Orensanz, D. Fernández, N. Bovcon, G. Piacentino, H. López, P. Toledo, E. Niklitschek, and M. Ehrlich. E. Crandall, the editor, and three anonymous reviewers made useful comments on an earlier version of the article. This work was supported by grants from the ANPCyT (PICT 2006–1468) and CONICET (PIP 2010–2012) (both granted to LAV) and from Secretaría de Ciencia, Tecnología e Innovación de la Provincia de Chubut 2010–2011 (granted to P. Useglio, UNPSJB). Field work was partially conducted within a World Natural Heritage Site and authorized by Dirección General de Conservación de Areas Protegidas del Chubut.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

114_2013_1061_MOESM1_ESM.doc (76 kb)
ESM 1 (DOC 76.5 kb)
114_2013_1061_MOESM2_ESM.doc (80 kb)
ESM 2 (DOC 80.5 kb)
114_2013_1061_MOESM3_ESM.doc (75 kb)
ESM 3 (DOC 75 kb)
114_2013_1061_MOESM4_ESM.doc (1.3 mb)
ESM 4 (DOC 1.31 kb)

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Control 19:716–723CrossRefGoogle Scholar
  2. Andrew TG, Hecht T, Heemstra PC, Lutjeharms JRE (1995) Fishes of the Tristan da Cunha and Gough Island, South Atlantic Ocean. Ichthyol Bull JLB Smith Inst Ichthyol 63:1–41Google Scholar
  3. Arbogast B, Edwards SV, Wakeley J, Beerli P, Slowinski JB (2002) Estimating divergence times from molecular data on phylogenetic and population genetic time scales. Annu Rev Ecol Syst 33:707–740CrossRefGoogle Scholar
  4. Barnard KH (1927) A monograph of the marine fishes of South Africa. Part II. Ann S Afr Mus 21:419–1065Google Scholar
  5. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations, Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier. http://kimura.univ-montp2.fr/genetix/. Accessed 19 Mar 2013
  6. Bovcon ND, Cochia PD (2007) Guía para el reconocimiento de peces capturados por buques pesqueros monitoreados con observadores a bordo. Special Publication, Chubut Fishery Administration. http://www.chubut.gov.ar/pesca/imagenes/reconocimiento.pdf. Accessed 19 Mar 2013
  7. Bunke C, Hanel R, Trautner JH (2013) Phylogenetic relationships among North Atlantic redfish (genus Sebastes) as revealed by mitochondrial DNA sequence analyses. J Appl Ichthyol 29:82–92CrossRefGoogle Scholar
  8. Burford MO (2009) Demographic history, geographic distribution and reproductive isolation of distinct lineages of blue rockfish (Sebastes mystinus), a marine fish with a high dispersal potential. J Evol Biol 22:1471–1486PubMedCrossRefGoogle Scholar
  9. Burford MO, Bernardi G, Carr MH (2011) Analysis of individual year-classes of a marine fish reveals little evidence of first-generation hybrids between cryptic species in sympatric regions. Mar Biol 158:1815–1827CrossRefGoogle Scholar
  10. Buonaccorsi VP, Kimbrell CA, Lynn EA, Vetter RD (2005) Limited realized dispersal and introgressive hybridization influence genetic structure and conservation strategies for brown rockfish, Sebastes auriculatus. Conserv Genet 6:697–713CrossRefGoogle Scholar
  11. Chan K, Levin SA (2005) Leaky prezygotic isolation and porous genomes: rapid introgression of maternally inherited DNA. Evol 59:720–729Google Scholar
  12. Chen L-C (1971) Systematics, variation, distribution and biology of rockfishes of the subgenus Sebastomus (Pisces, Scorpaenidae, Sebastes). Bull Scripps Inst Oceanogr 18:1–115Google Scholar
  13. Cotrina CP, Otero HO, Cousseau MB (1976) Informe sobre la campaña de pesca exploratoria del B/I “Profesor Siedlecki” (noviembre de 1973 – enero de 1974). Contrib Inst Biol Mar 331:1–58Google Scholar
  14. Cousseau MB, Perrotta RG (2000) Peces Marinos de Argentina: Biología, Distribución, Pesca. INIDEP, Mar del PlataGoogle Scholar
  15. Cunningham RO (1871) Notes on the natural history of the Strait of Magellan and west coast of Patagonia made during the voyage of H.M.S. ‘Nassau’ in the years 1866, 67, 68 & 69. Edmonston and Douglas, EdinburghGoogle Scholar
  16. Cuvier G (1829) Le Règne Animal, distribute d’après son organization, pour servir de base à l’histoire naturelle des animaux et d’introduction à l’anatomie compare. 2nd edn, vol 2. Imprimiere D’Hyppolyte Tilliard, ParisGoogle Scholar
  17. Cuvier G, Valenciennes A (1829) Histoire naturelle des poissons. Volume 4. Imprimerie de F.G. Levrault, StrasbourgGoogle Scholar
  18. Cuvier G, Valenciennes A (1833) Histoire naturelle des poissons. Volume 9. Imprimerie de F.G. Levrault, StrasbourgGoogle Scholar
  19. De Buen F (1960) Nota preliminar sobre los peces del género Sebastodes en la fauna chilena. Rev Chil Hist Nat 55:3–26Google Scholar
  20. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  21. Elmer KR, Lehtonen TK, Meyer A (2009) Color assortative mating contributes to sympatric divergence of neotropical cichlid fish. Evol 63:2750–2757CrossRefGoogle Scholar
  22. Eschmeyer WN (1969) A systematic review of the scorpionfishes of the Atlantic Ocean (Pisces: Scorpaenidae). Occas Pap Calif Acad Sci 79:1–143Google Scholar
  23. Eschmeyer WN, Fricke D, Fong JD, Polack DA (2010) Marine fish diversity: history of knowledge and discovery (Pisces). Zootaxa 2525:19–50Google Scholar
  24. Eschmeyer WN, Hureau J-C (1971) Sebastes mouchezi, a senior synonym of Helicolenus tristanensis, with comments on Sebastes capensis and zoogeographical considerations. Copeia 3:576–579CrossRefGoogle Scholar
  25. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  26. Galván DE (2008) Ensambles de peces en los arrecifes norpatagónicos: diversidad, abundancia y relaciones tróficas y con el hábitat. Doctoral Dissertation, Universidad Nacional del ComahueGoogle Scholar
  27. Galván DE, Botto F, Parma AM, Bandieri L, Mohamed N, Iribarne OO (2009a) Food partitioning and spatial subsidy in shelter-limited fishes inhabiting patchy reefs of Patagonia. J Fish Biol 75:2585–2605PubMedCrossRefGoogle Scholar
  28. Galván DE, Sweeting CJ, Polunin NVC (2012) Methodological uncertainty in resource mixing models for generalist fishes. Oecologia 169:1083–1093PubMedCrossRefGoogle Scholar
  29. Galván DE, Venerus LA, Irigoyen AJ (2009b) The reef-fish fauna of the Northern Patagonian gulfs of Argentina, Southwestern Atlantic. O Fish Sci J 2:90–98Google Scholar
  30. Gharrett AJ, Mecklenburg CW, Seeb LW, Li Z, Matala AP, Gray AK, Heifetz J (2006) Do genetically distinct rougheye rockfish sibling species differ phenotypically? Trans Am Fish Soc 135:792–800CrossRefGoogle Scholar
  31. Gmelin JF (1789) Carola a Linné. Sistema naturae per regna tria naturae. Vol 1 Part 3Google Scholar
  32. Góngora ME (2010) Dinámica y manejo de la captura incidental de peces en la pesquería del langostino patagónico (Pleoticus muelleri). Doctoral Dissertation, Universidad Nacional del ComahueGoogle Scholar
  33. González MT, Barrientos C, Moreno CA (2006) Biogeographical patterns in endoparasite communities of a marine fish (Sebastes capensis Gmelin) with extended range in the Southern Hemisphere. J Biogeogr 33:1086–1095CrossRefGoogle Scholar
  34. González MT, Moreno CA (2005) The distribution of the ectoparasite fauna of Sebastes capensis from the southern hemisphere does not correspond with zoogeographical provinces of free-living marine animals. J Biogeogr 32:1539–1547CrossRefGoogle Scholar
  35. Goudet J (2005) FSTAT [Online]. http://www2.unil.ch/popgen/softwares/fstat.htm Accessed 19 Mar 2013
  36. Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372PubMedCrossRefGoogle Scholar
  37. Hyde JR, Kimbrell CA, Budrick JE, Lynn EA, Vetter RD (2008) Cryptic speciation in the vermillion rockfish (Sebastes miniatus) and the role of bathymetry in the speciation process. Mol Ecol 17:1122–1136PubMedCrossRefGoogle Scholar
  38. Hyde JR, Vetter RD (2007) The origin, evolution, and diversification of rockfishes of the genus Sebastes (Cuvier). Mol Phylogenet Evol 44:790–811PubMedCrossRefGoogle Scholar
  39. Ingram T (2011) Speciation along a depth gradient in a marine adaptive radiation. Proc R Soc B 278:613–618PubMedCrossRefGoogle Scholar
  40. Irigoyen AJ, Galván DE, Venerus LA, Parma AM (2013) Variability in abundance of temperate reef fishes estimated by visual census. PLoS One 8(4):e61072PubMedCrossRefGoogle Scholar
  41. Irigoyen AJ, Venerus LA (2008) The ‘pole-hooking’ method: a novel and economical technique for in situ tagging small to medium-size fishes. Fish Res 91:349–353CrossRefGoogle Scholar
  42. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806PubMedCrossRefGoogle Scholar
  43. Jenyns L (1840) In: Darwin C (ed) Part IV. Fish. The zoology of the voyage of H.M.S. Beagle, under the command of Captain Fitzroy, R.N. during the years 1832 to 1836. Smith, Elder and Co, LondonGoogle Scholar
  44. Jordan DS, Gilbert CH (1880) Description of seven new species of sebastoid fishes, from the coast of California. Proc US Natl Mus 3:287–298Google Scholar
  45. Kai Y, Nakayama K, Nakabo T (2002) Genetic differences among three colour morphotypes of the black rockfish, Sebastes inermis, inferred from mtDNA and AFLP analyses. Mol Ecol 11:2591–2598PubMedCrossRefGoogle Scholar
  46. Kendall AW (2001) An historical review of Sebastes taxonomy and systematics. Mar Fish Rev 62:1–23Google Scholar
  47. Kim IC, Lee JS (2004) The complete mitochondrial genome of the rockfish Sebastes schlegeli (Scorpaeniformes, Scorpaenidae). Mol Cells 17:322–328PubMedGoogle Scholar
  48. Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216CrossRefGoogle Scholar
  49. Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca EX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. PNAS 86:6196–6200PubMedCrossRefGoogle Scholar
  50. Kong Uriba I (1985) Revisión de las especies chilenas de Sebastes (Osteichthyes, Scorpaeniformes, Scorpaenidae). Estud Oceanol 4:21–75Google Scholar
  51. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  52. Love MS, Yoklavich M, Thorsteinson L (2002) The rockfishes of the Northeast Pacific. University of California Press, Los AngelesGoogle Scholar
  53. Menni RC, López HL (1984) Distributional patterns of Argentine marine fishes. Physis Sec A 42:71–85Google Scholar
  54. Meyer A, Kocher TD, Basasibwaki P, Wilson AC (1990) Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347:550–553PubMedCrossRefGoogle Scholar
  55. Muto N, Kai Y, Nakabo T (2011) Genetic and morphological differences between Sebastes vulpes and S. zonatus (Teleostei: Scorpaeniformes: Scorpaenidae). Fish Bull 109:429–439Google Scholar
  56. Nakamura I, Inada T, Takeda M, Hatanaka H (1986) Important fishes trawled off Patagonia. Japan Marine Fishery Resource Research Center, TokyoGoogle Scholar
  57. Narum SR, Buonaccorsi VP, Kimbrell CA, Vetter RD (2004) Genetic divergence between gopher rockfish (Sebastes carnatus) and black and yellow rockfish (Sebastes chrysomelas). Copeia 2004:926–931CrossRefGoogle Scholar
  58. Norman JR (1937) Coast Fishes. Part II. The Patagonian Region, 16th edn. Discovery Reports, LondonGoogle Scholar
  59. Nuñez JJ, González MT, Pérez-Losada M (2010) Testing species boundaries between Atlantic and Pacific lineages of the Patagonian rockfish Sebastes oculatus (Teleostei: Scorpaenidae) through mitochondrial DNA sequences. Rev Oceanogr Mar Oceanogr 45:565–573CrossRefGoogle Scholar
  60. Nylander JAA (2004) MrModeltest v2. Evolutionary Biology Centre, Uppsala University. http://www.abc.se/~nylander/mrmodeltest2/mrmodeltest2.html. Accessed 19 Mar 2013.
  61. Orr JW, Blackburn JE (2004) The dusky rockfishes (Teleostei: Scorpaeniformes) of the North Pacific Ocean: resurrection of Sebastes variabilis (Pallas, 1814) and a redescription of Sebastes ciliatus (Tilesius, 1813). Fish Bull 102:328–348Google Scholar
  62. Otero HO, Bezzi SI, Renzi MA, Verazay GA (1982) Atlas de los recursos pesqueros demersales del Mar Argentino. Contrib INIDEP 423:1–248Google Scholar
  63. Pappe L (1853) Synopsis of the edible fishes at the Cape of Good Hope. Van de Sandt de Villier and Trier, Cape TownGoogle Scholar
  64. Pearse DE, Wooninck L, Dean CA, Garza JC (2007) Identification of Northeastern Pacific rockfish (Sebastes spp.) using multilocus nuclear DNA genotypes. Trans Am Fish Soc 136:272–280CrossRefGoogle Scholar
  65. Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  66. Rambaut A, Drummond AJ (2007) Tracer v1.4. http://beast.bio.ed.ac.uk/Tracer. Accessed 19 Mar 2013
  67. Raymond M, Rousset F (1995) Genepop (version 1.2), population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  68. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  69. Rocha-Olivares A (2004) Molecular evolution of the marine genus Sebastes: insights into the evolutionary consequences of viviparity. In: Grier HJ, Uribe MC (eds) Viviparous fishes. New Life Publications, Florida, pp 51–57Google Scholar
  70. Rocha-Olivares A, Rosenblatt RH, Vetter RD (1999a) Molecular evolution, systematics, and zoogeography of the rockfish subgenus Sebastomus (Sebastes, Scorpaenidae) based on mitochondrial cytochrome b and control region sequences. Mol Phylogenet Evol 2:441–458CrossRefGoogle Scholar
  71. Rocha-Olivares A, Rosenblatt RH, Vetter RD (1999b) Cryptic species of rockfishes (Sebastes: Scorpaenidae) in the Southern Hemisphere inferred from mitochondrial lineages. J Hered 90:404–411PubMedCrossRefGoogle Scholar
  72. Rodríguez F, Oliver JF, Marín A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theoret Biol 142:485–501CrossRefGoogle Scholar
  73. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  74. Roques S, Sévigny J-M, Bernatchez L (2001) Evidence for broadscale introgressive hybridization between two redfish (genus Sebastes) in the North-west Atlantic: a rare marine example. Mol Ecol 10:149–165PubMedCrossRefGoogle Scholar
  75. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  76. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  77. Sánchez RP, Acha EM (1988) Development and occurrence of embryos, larvae and juveniles of Sebastes oculatus with reference to two Southwest Atlantic Scorpaenids: Helicolenus dactylopterus lahillei and Pontinus rathbuni. Meeresforch 32:107–133Google Scholar
  78. Smith A (1845) Illustrations of the Zoology of South Africa; consisting chiefly of figures and descriptions of the objects of natural history collected during an expedition into the interior of South Africa, in the years 1834, 1835 and 1836. Smith, Elder and Co, LondonGoogle Scholar
  79. Smith JLB (1949) The sea fishes of South Africa. Central News Agency Limited, Cape TownGoogle Scholar
  80. Stransky C, MacLellan SE (2005) Species separation and zoogeography of redfish and rockfish (genus Sebastes) by otolith shape analysis. Can J Fish Aquat Sci 62:2265–2276CrossRefGoogle Scholar
  81. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  82. Venerus LA (2006) Dinámica espacial del salmón de mar Pseudopercis semifasciata (Cuvier, 1829) (Pinguipedidae)—Implicancias para el uso sustentable de sistemas de arrecifes rocosos. Doctoral Dissertation, Universidad de Buenos AiresGoogle Scholar
  83. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evol 38:1358–1370CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2013

Authors and Affiliations

  • Leonardo A. Venerus
    • 1
  • Javier E. Ciancio
    • 1
  • Carla Riva-Rossi
    • 1
  • Elizabeth A. Gilbert-Horvath
    • 2
  • Atila E. Gosztonyi
    • 1
  • John Carlos Garza
    • 2
  1. 1.Centro Nacional Patagónico—Consejo Nacional de Investigaciones Científicas y Técnicas (CENPAT—CONICET)Puerto MadrynArgentina
  2. 2.National Marine Fisheries ServiceSouthwest Fisheries Science CenterSanta CruzUSA

Personalised recommendations