, Volume 100, Issue 3, pp 281–284 | Cite as

Ontogenetic variation in cold tolerance plasticity in Drosophila: is the Bogert effect bogus?

  • Katherine A. MitchellEmail author
  • Brent J. Sinclair
  • John S. Terblanche
Short Communication


Ontogenetic variation in plasticity is important to understanding mechanisms and patterns of thermal tolerance variation. The Bogert effect postulates that, to compensate for their inability to behaviourally thermoregulate, less-mobile life stages of ectotherms are expected to show greater plasticity of thermal tolerance than more-mobile life stages. We test this general prediction by comparing plasticity of thermal tolerance (rapid cold-hardening, RCH) between mobile adults and less-mobile larvae of 16 Drosophila species. We find an RCH response in adults of 13 species but only in larvae of four species. Thus, the Bogert effect is not as widespread as expected.


Behavioural thermoregulation Phenotypic plasticity Climate variability Development 



JST and KAM are supported by FruitGro Science and the National Research Foundation. BJS is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

Conflict of interest

The authors declare no conflict of interest.


  1. Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, OxfordCrossRefGoogle Scholar
  2. Bowler K, Terblanche JS (2008) Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biol Rev 83:339–355PubMedCrossRefGoogle Scholar
  3. Dillon ME, Wang G, Garrity PA, Huey RB (2009) Thermal preference in Drosophila. J Therm Biol 34:109–119PubMedCrossRefGoogle Scholar
  4. Feder ME, Roberts SP, Bordelon AC (2000) Molecular thermal telemetry of free-ranging adult Drosophila melanogaster. Oecologia 123:460–465CrossRefGoogle Scholar
  5. Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485Google Scholar
  6. Huey RB, Hertz PE, Sinervo B (2003) Behavioral drive versus behavioural inertia in evolution: a null model approach. Am Nat 161:357–366PubMedCrossRefGoogle Scholar
  7. Jensen D, Overgaard J, Sørensen J (2007) The influence of developmental stage on cold shock resistance and ability to cold-harden in Drosophila melanogaster. J Insect Physiol 53:179–186PubMedCrossRefGoogle Scholar
  8. Kelty JD, Lee RE Jr (2001) Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophila melanogaster. J Insect Physiol 45:719–726CrossRefGoogle Scholar
  9. Klok CJ, Chown SL (2001) Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic kelp fly, Paractora dreuxi (Diptera: Helcomyzidae). J Insect Physiol 47:95–109PubMedCrossRefGoogle Scholar
  10. Kristensen TN, Loeschcke V, Bilde T, Hoffmann AA, Sgrὸ C, Noreikiené K, Ondrésik M, Bechsgaard JS (2011) No inbreeding depression for low temperature developmental acclimation across multiple Drosophila species. Evolution 65:3195–3201PubMedCrossRefGoogle Scholar
  11. Lee RE, Elnitsky MA, Rinehart JP, Hayward SA, Sandro LH, Denlinger DL (2006) Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. J Exp Biol 209:399–406PubMedCrossRefGoogle Scholar
  12. Marais E, Chown SL (2008) Beneficial acclimation and the Bogert effect. Ecol Lett 11:1027–1036PubMedCrossRefGoogle Scholar
  13. Marais E, Terblanche JS, Chown SL (2009) Life stage-related differences in hardening and acclimation of thermal tolerance traits in the kelp fly, Paractora dreuxi (Diptera, Helcomyzidae). J Insect Physiol 55:336–343PubMedCrossRefGoogle Scholar
  14. Nyamukondiwa C, Terblanche JS, Marshall KE, Sinclair BJ (2011) Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). J Evol Biol 24:1927–1938PubMedCrossRefGoogle Scholar
  15. Pagel, M. & Meade, A. (2008) BayesTraits. Available at: <>
  16. Rezende EL, Santos M (2012) Comment on ‘Ecologically relevant measure of tolerance to potentially lethal temperatures’. J Exp Biol 215:702–703PubMedCrossRefGoogle Scholar
  17. Roberts SP, Feder ME (1999) Natural hyperthermia and expression of the heat shock protein Hsp70 affect developmental abnormalities in Drosophila melanogaster. Oecologia 121:323–329CrossRefGoogle Scholar
  18. StatSoft, Inc. (2011). Statistica (data analysis software system), version 10.
  19. Strachan LA, Tarnowski-Garner HE, Marshall KE, Sinclair BJ (2011) The evolution of cold tolerance in Drosophila larvae. Physiol Biochem Zool 84:43–53PubMedCrossRefGoogle Scholar
  20. Terblanche JS, Hoffmann AA, Mitchell KA, Rako L, le Roux PC, Chown SL (2011) Ecologically relevant measures of tolerance to potentially lethal temperatures. J Exp Biol 214:3713–3725PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Katherine A. Mitchell
    • 1
    Email author
  • Brent J. Sinclair
    • 2
  • John S. Terblanche
    • 1
  1. 1.Department of Conservation Ecology & Entomology, Faculty of AgriSciencesStellenbosch UniversityMatielandSouth Africa
  2. 2.Department of BiologyUniversity of Western OntarioLondonCanada

Personalised recommendations