Naturwissenschaften

, Volume 100, Issue 2, pp 193–197 | Cite as

Genomewide analysis indicates that queen larvae have lower methylation levels in the honey bee (Apis mellifera)

  • Yuan Yuan Shi
  • Wei Yu Yan
  • Zachary Y. Huang
  • Zi Long Wang
  • Xiao Bo Wu
  • Zhi Jiang Zeng
Short Communication

Abstract

The honey bee is a social insect characterized by caste differentiation, by which a young larva can develop into either a queen or a worker. Despite possessing the same genome, queen and workers display marked differences in reproductive capacity, physiology, and behavior. Recent studies have shown that DNA methylation plays important roles in caste differentiation. To further explore the roles of DNA methylation in this process, we analyzed DNA methylome profiles of both queen larvae (QL) and worker larvae (WL) of different ages (2, 4, and 6 day old), by using methylated DNA immunoprecipitation-sequencing (meDIP-seq) technique. The global DNA methylation levels varied between the larvae of two castes. DNA methylation increased from 2-day- to 4-day-old QL and then decreased in 6-day-old larvae. In WL, methylation levels increased with age. The methylcytosines in both larvae were enriched in introns, followed by coding sequence (CDS) regions, CpG islands, 2 kbp downstream and upstream of genes, and 5′ and 3′ untranslated regions (UTRs). The number of differentially methylated genes (DMGs) in 2-, 4-, and 6-day-old QL and WL was 725, 3,013, and 5,049, respectively. Compared to 4- and 6-day-old WL, a large number of genes in QL were downmethylated, which were involved in many processes including development, reproduction, and metabolic regulation. In addition, some DMGs were concerned with caste differentiation.

Keywords

Honey bee Queen larvae Worker larvae DNA methylation Differentially methylated genes Caste differentiation 

Supplementary material

114_2012_1004_MOESM1_ESM.doc (484 kb)
ESM 1(DOC 484 kb)

References

  1. Barchuk AR, dos Santos Cristino A, Kucharski R, Simoes ZLP, Maleszka R (2007) Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera. BMC Dev Biol 7:70. doi:10.1186/1471-213X-7-70 PubMedCrossRefGoogle Scholar
  2. Chen X, Yu XM, Zheng HQ, Cai YM, Hu FL (2009) Separation and enrichment of sRNAs from honeybee (Apis mellifera L.) and its quality detection by library construction. Sci Agric Sin 42:2943–2948Google Scholar
  3. Evans JD, Wheeler DE (2000) Expression profiles during honeybee caste determination. Genome Biol 2:research0001.1–0006CrossRefGoogle Scholar
  4. Flanders SE (1960) Caste in the honey bee. Insect Soc 1:9–16. doi:10.1007/BF02225754 CrossRefGoogle Scholar
  5. Foret S, Kucharski R, Pellegrini M, Feng S, Jacobsen SE, Robinson GE, Maleszka R (2012) DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honeybees. Proc Natl Acad Sci U S A 109:4968–4973. doi:10.1073/pnas.1202392109 PubMedCrossRefGoogle Scholar
  6. Hartfelder K, Tozetto SO, Rachinsky A (1993) Sex-specific developmental profiles of juvenile hormone synthesis in honeybee larvae. Roux's Arch Dev Biol 202:176–180. doi:10.1007/BF00365308 CrossRefGoogle Scholar
  7. Hepperle C, Hartfelder K (2001) Differentially expressed regulatory genes in honeybee caste development. Naturwissenschaften 88:113–116. doi:10.1007/s001140000196 PubMedCrossRefGoogle Scholar
  8. Ikeda T, Furukawa S, Nakamura J, Sasaki M, Sasaki T (2011) CpG methylation in the hexamerin 110 gene in the European honeybee, Apis mellifera. J Insect Sci 11:74. doi:10.1673/031.011.7401 PubMedCrossRefGoogle Scholar
  9. Kamakura M (2011) Royalactin induces queen differentiation in honeybees. Nature 473:478–483. doi:10.1038/nature100937 PubMedCrossRefGoogle Scholar
  10. Kucharski JR, Maleszka J, Fore S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation.Science319:1827–1829. doi:10.1126/science.1153069 PubMedCrossRefGoogle Scholar
  11. Li M, Wu H, Luo Z et al (2012) An atlas of DNA methylomes in porcine adipose and muscle tissues. Nat Commun 3:850. doi:10.1038/ncomms1854 PubMedCrossRefGoogle Scholar
  12. Li N, Ye M, Li Y et al (2010) Whole genome DNA methylation analysis based on high throughput sequencing technology. Methods 52:203–212. doi:10.1016/j.ymeth.2010.04.009 PubMedCrossRefGoogle Scholar
  13. Li Q, Li N, Hu X et al (2011a) Genome-wide mapping of DNA methylation in chicken. PLoS One 6:e19428. doi:10.1371/journal.pone.0019428 PubMedCrossRefGoogle Scholar
  14. Li Z, Nie F, Wang S, Li L (2011b) Histone H4 Lys 20 monomethylation by histone methylase SET8 mediates Wnt target gene activation. Proc Natl Acad Sci U S A 108:3116–3123. doi:10.1073/pnas.1009353108 PubMedCrossRefGoogle Scholar
  15. Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R (2010) The honeybee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 9:e1000506. doi:10.1371/annotation/2db9ee19-faa4-43f2-af7a-c8aeacca8037 CrossRefGoogle Scholar
  16. Ruike Y, Imanaka Y, Sato F, Shimizu K, Tsujimoto G (2010) Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing. BMC Genomics 11:137. doi:10.1186/1471-2164-11-137 PubMedCrossRefGoogle Scholar
  17. Seeley TD (1989) The honeybee colony as a superorganism. Am Sci 77:546–553Google Scholar
  18. Shi YY, Huang ZY, Zeng ZJ, Wang ZL, Wu XB, Yan WY (2011) Diet and cell size both affect queen–worker differentiation through DNA methylation in honeybees (Apis mellifera, Apidae). PLoS One 6:e18808. doi:10.1371/journal.pone.0018808 PubMedCrossRefGoogle Scholar
  19. Smith CR, Toth AL, Suarez AV, Robinson GE (2008) Genetic and genomic analyses of the division of labor in insect societies. Nat Rev Genet 9:735–748. doi:10.1038/nrg2429 PubMedCrossRefGoogle Scholar
  20. Taiwo O, Wilson GA, Morris T, Seisenberger S, Reik W, Pearce D, Beck S, Butcher LM (2012) Methylome analysis using MeDIP-seq with low DNA concentrations. Nat Protoc 7:617–636. doi:10.1038/nprot.2012.012 PubMedCrossRefGoogle Scholar
  21. Tate PH, Bird AP (1993) Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 3:226–231. doi:10.1016/0959-437X(93)90027-M PubMedCrossRefGoogle Scholar
  22. The Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949. doi:10.1038/nature05260 CrossRefGoogle Scholar
  23. Wang Y, Jorda M, Jones PL, Maleszk R, Ling X, Robertson HM, Mizzen CA, Peinado MA, Robinson GE (2006) Functional CpG methylation system in a social insect. Science 314:645–647. doi:10.1126/science.1135213 PubMedCrossRefGoogle Scholar
  24. Weaver N (1966) Physiology of caste determination. Annu Rev Entomol 11:79–102. doi:10.1146/annurev.en.11.010166.000455 PubMedCrossRefGoogle Scholar
  25. Weaver N (1957) Effects of larval honey bee age on dimorphic differentiation of the female honeybee. Ann Entomol Soc Am 50:283–294Google Scholar
  26. Weiner SA, Toth AL (2012) Epigenetics in social insects: a new direction for understanding the evolution of castes. Genet Res Int 2012:609810. doi:10.1155/2012/609810 PubMedGoogle Scholar
  27. Wheeler DE, Buck N, Evans JD (2006) Expression of insulin pathway genes during the period of caste determination in the honeybee, Apis mellifera. Insect Mol Biol 15:597–602. doi:10.1111/j.1365-2583.2006.00681x PubMedCrossRefGoogle Scholar
  28. Wolschin F, Mutti NS, Amdam GV (2011) Insulin receptor substrate influences female caste development in honeybees. Biol Lett 7:112–115. doi:10.1098/rsbl.2010.0463 PubMedCrossRefGoogle Scholar
  29. Wu J, Li JK (2010) Proteomic analysis of the honeybee (Apis mellifera L.) caste differentiation between worker and queen larvae. Sci Agric Sin 43:176–184Google Scholar
  30. Zhang X, Yazaki J, Sundaresan A (2006) Genome-wide high-resolution rapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201. doi:10.1016/j.cell.2006.08.003 PubMedCrossRefGoogle Scholar
  31. Zeng ZJ (2008) An apparatus for royal jelly production that requires no larvae grafting. Applied Patents, China. Patent # ZL 200720008203.0Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yuan Yuan Shi
    • 1
  • Wei Yu Yan
    • 1
  • Zachary Y. Huang
    • 2
  • Zi Long Wang
    • 1
  • Xiao Bo Wu
    • 1
  • Zhi Jiang Zeng
    • 1
  1. 1.Honeybee Research InstituteJiangxi Agricultural UniversityNanchangPeople’s Republic of China
  2. 2.Department of EntomologyMichigan State UniversityEast LansingUSA

Personalised recommendations