Naturwissenschaften

, Volume 100, Issue 1, pp 33–43 | Cite as

Developmental abnormalities in Glomeris marginata (Villers 1789) (Myriapoda: Diplopoda): implications for body axis determination in a myriapod

Original Paper

Abstract

Abnormally developing embryos (ADEs) of the common pill millipede Glomeris marginata have been investigated by means of nuclear staining and mRNA in situ hybridization. It showed that all ADEs represent cases of Duplicitas posterior, which means that the posterior body pole is duplicated. The severity of the duplication ranges from duplicated posterior trunk segments in one specimen to an almost completely duplicated specimen that only shares the very anterior head region. Remarkably, none of the encountered ADEs represents a case of Duplicitas anterior (duplicated anterior pole) or a case of Duplicitas cruciata (cruciate duplication with two anterior and two posterior poles). This observation is discussed in the light of earlier reports on G. marginata ADEs that claim to have found these abnormalities. The lack of any other axial abnormality aside from D. posterior implies that early axis determination in G. marginata, and possibly myriapods in general, underlies the developmental mechanisms that prevent the formation of any other type of axial duplication. It is proposed that the formation of D. posterior-type embryos could be caused by the formation of two instead of only one posterior cumulus early during development.

Keywords

Myriapod development Arthropoda Diplopoda Axis formation 

Supplementary material

114_2012_989_Fig6_ESM.jpg (25 kb)
ESM 1

(JPEG 24 kb)

114_2012_989_MOESM1_ESM.tif (18.6 mb)
High resolution image (TIFF 19070 kb)
114_2012_989_Fig7_ESM.jpg (37 kb)
ESM 2

(JPEG 36 kb)

114_2012_989_MOESM2_ESM.tif (21.8 mb)
High resolution image (TIFF 22280 kb)
114_2012_989_Fig8_ESM.jpg (34 kb)
ESM 3

(JPEG 34 kb)

114_2012_989_MOESM3_ESM.tif (8.1 mb)
High resolution image (TIFF 8313 kb)

References

  1. Alwes F, Scholtz G (2005) Stages and other aspects of the embryology of the parthenogenetic Marmorkrebs (Decapoda, Reptantia, Astacida). Dev Genes Evol 216:169–184Google Scholar
  2. Balazuc J, Schubart O (1962) La tératologie des Myriapodes. Année Biol 1:145–174Google Scholar
  3. Brauer A (1917) Ueber Doppelbildungen des Skorpion Euscorpius carpathicus L. Sitz Akad wiss Berlin, pp. 208–221, 12 figsGoogle Scholar
  4. Chatton (1909) Sur un nauplius double anadydyme d’Ophioseides jouhini Chatton. Compt Rend Soc Biol Paris 67:482–484Google Scholar
  5. Ceuca T (1989) Genul Glomeris Latr. 1802 in fauna de diplopode a Romaniei (cu cateva aspecte teratologice). Stud Univ Babes-Bolyai Biol 34:49–55Google Scholar
  6. David R, Wedlich D (2001) PCR-based RNA probes, a quick and sensitive method to improve whole mount embryo in situ hybridization. Biotech 30:769–772Google Scholar
  7. Dohle W (1964) Die Embryonalentwicklung von Glomeris marginata (Villers) im Vergleich zur Entwicklung anderer Diplopoden. Zool Jb Anat 81:241–310Google Scholar
  8. Ehn A (1962) The development of spider embryos after centrifugation. Zool Bidrag Upps 35:339–368Google Scholar
  9. Ehn A (1963) Effects of sulphydryl-blocking substances on development of spider embryos. Zool Bidrag Upps 36:49–76Google Scholar
  10. Enghoff H, Dohle W, Blower JG (1993) Anamorphosis in millipedes (Diplopoda)—the present state of knowledge with some developmental and phylogenetic considerations. Zool J Linn Soc 109:103–234CrossRefGoogle Scholar
  11. Harlioglu MM (2002) The first report on the occurrence of twins in a freshwater crayfish, Pacifastacus leniusculus (Decapoda, Atacoidea). Folia Biol (Krakow) 50:215–216Google Scholar
  12. Harzsch S, Benton J, Beltz BS (2000) An unusual case of a mutant lobster embryo with double brain and double ventral nerve cord. Arthropod Struct Dev 29:95–99PubMedCrossRefGoogle Scholar
  13. Heymons R (1897) Mittheilungen über die Segmentirung und den Körperbau der Myriopoden. Proc Königlich Preußischen Acad Sci Berlin 40:915–923Google Scholar
  14. Heymons R (1901) Die Entwicklungsgeschichte der Scolopender. Zool Stuttg 13:1–244Google Scholar
  15. Holm Å (1952) Experimentelle Untersuchungen ueber die Entwicklung und Entwicklungsphysiologie des Spinnenembryos. Zool Bidr Uppsala 29:293–424Google Scholar
  16. Hubert M (1968) Sur des cas de monstruosités doubles observés chez des larves de Glomeris marginata (Villers) (Myriapode, Diplopode, Oniscomorphe, Glomeridia). Bull Soc Zool Fr 93:443–450Google Scholar
  17. Itow T, Sekiguchi K (1979) Induction of multiple embryos with NaHCO3 or calcium free see water in the horseshoe crab. Wilhelm Roux Arch 187:245–254CrossRefGoogle Scholar
  18. Janssen R, Prpic NM, Damen WGM (2004) Gene expression suggests decoupled dorsal and ventral segmentation in the millipede Glomeris marginata (Myriapoda: Diplopoda). Dev Biol 268:89–104PubMedCrossRefGoogle Scholar
  19. Janssen R (2011a) An abnormally developed embryo of the pill millipede Glomeris marginata that lacks dorsal segmental derivatives. Dev Genes Evol 221:351–355PubMedCrossRefGoogle Scholar
  20. Janssen R (2011b) Diplosegmentation in the pill millipede Glomeris marginata is the result of dorsal fusion. Evol Dev 13:477–487PubMedCrossRefGoogle Scholar
  21. Janssen R, Budd GE, Damen WGM (2011) Gene expression suggests conserved mechanisms patterning the heads of insects and myriapods. Dev Biol 357:64–72PubMedCrossRefGoogle Scholar
  22. Juberthie C (1968) Teratologie experimentale chez un Opilion (Arachnide). J Embryol Exp Morph 19:49–82PubMedGoogle Scholar
  23. Juberthie-Jupeau L (1962) Dédoublement de la region postérieure du corps chez une larve de Scutigerella pagesi Jupeau (Myriapodes, Symphyles). Bull Soc Zool Fr 86:732–736Google Scholar
  24. Juberthie-Jupeau L (1968) Production experimentale de monsters doubles chez Glomeris marginata (Villers), Myriapode, Diplopode. C R Acad Sci Paris 266:1610–1612Google Scholar
  25. Juberthie-Jupeau L (1969) Action teratogene de la temperature sur l’embryon de Glomeris marginata (Villers) (Myriapodes, Diplopodes). Bull Mus Nat Hist Natur, Supp: 79–84Google Scholar
  26. Juberthie-Jupeau L (1974) Action de la température sur le développement embryonnaire de Glomeris marginata (Villers). Symp Zool Soc Lond 32:289–300Google Scholar
  27. Kalthoff K, Sander K (1968) Der Entwicklungsgang der Missbildung “Doppelabdomen” im partiell UV-bestrahlten Ei von Smittia parthenogenetica (Dip., Chironomidae). Wilhelm Roux Arch 161:129–146CrossRefGoogle Scholar
  28. Kettle C, Arthur W, Jowett T, Minelli A (1999) Homeotic transformation in a centipede. Trends Genet 15:393PubMedCrossRefGoogle Scholar
  29. Krause G (1934) Analyse erster Differenzierungsprozesse im Keim der Gewächshausschrecke durch künstlich erzeugte Zwillings-, Doppel- und Mehrfachbildungen. Wilhelm Roux Arch Entwmech Org 132:115–205CrossRefGoogle Scholar
  30. Krause G, Krause J (1954) Induktion sekundärer Segmente bei der metameren Selbstgliederung der Insektenkeimanlage. Naturwissenschaften 41:235–236Google Scholar
  31. Lesniewska M, Bonato L, Minelli A, Fusco G (2009) Trunk anomalies in the centipede Stigmatogaster subterranean provide insight in to late-embryonic segmentation. Arthropod Struct Dev 38:417–426PubMedCrossRefGoogle Scholar
  32. Minelli A, Pasqual C (1986) On some abnormal specimens of centipedes (Chilopoda). Lavori Soc Ven Sc Nat 11:135–141Google Scholar
  33. Sander K (1988) Studies in insect segmentation: from teratology to phenogenetics. Develop 104(Suppl):112–121Google Scholar
  34. Sander K (1997) Pattern formation in insect embryogenesis: the evolution of concepts and mechanisms. Int J Insect Morphol Embryol 25:349–367CrossRefGoogle Scholar
  35. Schnetter M (1934) Physiologische Untersuchungen über das Differenzierungszentrum in der Embryonalentwicklung der Honigbiene. Wilhelm Roux Arch Entwmech Org 131:285–323CrossRefGoogle Scholar
  36. Seitz KA (1970) Embryonale Defekt- und Doppelbildungen im Ei der Spinne Cupiennius salei (Ctenide). Zool Jb Anat Bd 87:588–639Google Scholar
  37. Sekiguchi K (1957) Reduplication in spider eggs produced by centrifugation. Sci Rep Tokyo Kyoiku Daigaku Sect B 8-130:187–240Google Scholar
  38. Selbie CM (1913) A new variety of Polydesmus coriaceus Porat, and note of a centipede monstrosity. Ann Mag Nat Hist 12:439–443Google Scholar
  39. Yajima H (1960) Studies on embryonic determination of the harlequin-fly, Chironomus dorsalis. I. Effects of centrifugation and of its combination with constriction and puncturing. J Embryol Exp Morph 8:198–215PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Earth SciencesUppsala UniversityUppsalaSweden

Personalised recommendations