, Volume 99, Issue 12, pp 1063–1066 | Cite as

Visual prey detection by near-infrared cues in a fish

  • Denis Meuthen
  • Ingolf P. Rick
  • Timo Thünken
  • Sebastian A. BaldaufEmail author
Short Communication


Many animal species are able to perceive light wavelengths beyond those visible to humans. While numerous species are additionally sensitive to short wavelengths (UV), long wavelengths such as the near-infrared spectrum (NIR) are supposed to be unsuitable for visual perception. Here, we experimentally show that under exclusive NIR illumination, the cichlid fish Pelvicachromis taeniatus displays a clear foraging response towards NIR reflecting prey. Additional control experiments without prey indicate that the observed behavior is not a mere response to the NIR environment. These results give first evidence for NIR visual sensitivity in a functional context and thus challenge the current view about NIR perception.


Pelvicachromis taeniatus Visual perception Foraging behavior Near-infrared sensitivity 








This research was funded by the Deutsche Forschungsgemeinschaft (BA 2885/2-3, TH 1615/1-1). We are grateful to Simon Vitt for the initial stimulus he gave us to work on infrared perception, Kathrin Langen for fish maintenance, and the Bakker Research Group for the discussion.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All experiments comply with the current laws of Germany.


  1. Baldauf SA, Bakker TCM, Herder F, Kullmann H, Thünken T (2010) Male mate choice scales female ornament allometry in a cichlid fish. BMC Evol Biol 10:301. doi: 10.1186/1471-2148-10-301 PubMedCrossRefGoogle Scholar
  2. Baldauf SA, Kullmann H, Bakker TCM, Thünken T (2011) Female nuptial coloration and its adaptive significance in a mutual mate choice system. Behav Ecol 22:478–485. doi: 10.1093/beheco/arq226 CrossRefGoogle Scholar
  3. Douglas RH, Partridge JC, Dulai K, Hunt D, Mullineaux CW, Tauber AY et al (1998) Dragon fish see using chlorophyll. Nature 393:423–424. doi: 10.1038/30871 CrossRefGoogle Scholar
  4. Evans WG (1964) Infrared receptors in Melanophila acuminata De Geer. Nature 202:211PubMedCrossRefGoogle Scholar
  5. Foster RG, Hankins MW (2002) Non-rod, non-cone photoreception in the vertebrates. Prog Retin Eye Res 21:507–527. doi: 10.1016/S1350-9462(02)00036-8 PubMedCrossRefGoogle Scholar
  6. Jacobs GH (1981) Comparative color vision. Academic, LondonGoogle Scholar
  7. Knowles A, Dartnall HJA (1977) Requirements for the visual sense. In: Davson H (ed) The eye, vol. 2B, 2nd edn. Academic, London, pp 1–13Google Scholar
  8. Lamb TD (1995) Photoreceptor spectral sensitivities: common shape in the long-wavelength region. Vision Res 35:3083–3091. doi: 10.1016/0042-6989(95)00114-F PubMedCrossRefGoogle Scholar
  9. Lamboj A (2004) Die Cichliden des Westlichen Afrikas. Birgit Schmettkamp, BornheimGoogle Scholar
  10. Langford VS, McKinley AJ, Quickenden TI (2001) Temperature dependence of the visible-near-infrared absorption spectrum of liquid water. J Phys Chem A 105:8916–8921. doi: 10.1021/jp010093m CrossRefGoogle Scholar
  11. Li J, Zhang Z, Liu F, Liu Q, Gan W, Chen J et al (2008) UVB-based mate-choice cues used by females of the jumping spider Phintella vittata. Curr Biol 18:699–703. doi: 10.1016/j.cub.2008.04.020 PubMedCrossRefGoogle Scholar
  12. Luo DG, Yue WWS, Ala-Laurila P, Yau KW (2011) Activation of visual pigments by light and heat. Science 332:1307–1312. doi: 10.1126/science.1200172 PubMedCrossRefGoogle Scholar
  13. Lythgoe JN (1972) The adaptation of visual pigments to their photic environment. In: Dartnall HJA (ed) Photochemistry of vision. Handbook of sensory physiology, vol 7.1. Springer, Berlin, pp 566–603Google Scholar
  14. Lythgoe JN (1984) Visual pigments and environmental light. Vision Res 24:1539–1550. doi: 10.1016/S0042-6989(84)80003-6 PubMedCrossRefGoogle Scholar
  15. Lythgoe JN, Partridge JC (1989) Visual pigments and the acquisition of visual information. J Exp Biol 146:1–20PubMedGoogle Scholar
  16. Maan ME, Hofker KD, van Alphen JJM, Seehausen O (2006) Sensory drive in cichlid speciation. Am Nat 167:947–954PubMedCrossRefGoogle Scholar
  17. Munz FW, McFarland WN (1975) The visible spectrum during twilight and its implications to vision. In: Evans GC, Bainbridge R, Rackham O (eds) Light as an ecological factor, vol 2. Blackwell, Oxford, pp 249–270Google Scholar
  18. Newman EA, Hartline PH (1982) The infrared vision of snakes. Sci Am 246:116–127CrossRefGoogle Scholar
  19. Pelli DG, Chamberlain SC (1989) The visibility of 350 °C black-body radiation by the shrimp Rimicaris exoculata and man. Nature 337:460–461. doi: 10.1038/337460a0 PubMedCrossRefGoogle Scholar
  20. Ranåker L, Nilsson PA, Brönmark C (2012) Effects of degraded optical conditions on behavioural responses to alarm cues in a freshwater fish. PLoS One 7:e38411. doi: 10.1371/journal.pone.0038411 PubMedCrossRefGoogle Scholar
  21. Rick IP, Bakker TCM (2008) Color signaling in conspicuous red sticklebacks: do ultraviolet signals surpass others? BMC Evol Biol 8:189. doi: 10.1186/1471-2148-8-189 PubMedCrossRefGoogle Scholar
  22. Rijkeboer M, Dekker AG, Gons HJ (1998) Subsurface irradiance reflectance spectra of inland waters differing in morphometry and hydrology. Aquat Ecol 31:313–323. doi: 10.1023/A:1009916501492 CrossRefGoogle Scholar
  23. Schwalm PA, Starrett PH, McDiarmid RW (1977) Infrared reflectance in leaf-sitting neotropical frogs. Science 196:1225–1227. doi: 10.1126/science.860137 PubMedCrossRefGoogle Scholar
  24. Tovée MJ (1995) Ultra-violet photoreceptors in the animal kingdom—their distribution and function. Trends Ecol Evol 10:455–460. doi: 10.1016/S0169-5347(00)89179-X PubMedCrossRefGoogle Scholar
  25. Widder EA, Latz MI, Herring PJ, Case JF (1984) Far red bioluminescence from two deep-sea fishes. Science 225:512–514. doi: 10.1126/science.225.4661.512 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Denis Meuthen
    • 1
  • Ingolf P. Rick
    • 1
  • Timo Thünken
    • 1
  • Sebastian A. Baldauf
    • 2
    Email author
  1. 1.Institute for Evolutionary Biology and EcologyUniversity of BonnBonnGermany
  2. 2.Theoretical Biology Group, Centre for Ecological and Evolutionary StudiesRijksuniversiteit GroningenGroningenThe Netherlands

Personalised recommendations