Advertisement

Naturwissenschaften

, Volume 99, Issue 9, pp 751–765 | Cite as

Diel flight behaviour and dispersal patterns of aquatic Coleoptera and Heteroptera species with special emphasis on the importance of seasons

  • Zoltán CsabaiEmail author
  • Zoltán Kálmán
  • Ildikó Szivák
  • Pál Boda
Original Paper

Abstract

Dispersal flight is the most important and almost the only way for primary aquatic insects to find new water habitats. During a 30-week-long project, we monitored the flight dispersal behaviour of aquatic beetles and bugs with using highly and horizontally polarizing agricultural black plastic sheets laid onto the ground. Based on the flight data of more than 45,000 individuals and 92 species, we explored and described eight different diel flight activity patterns. We found that seven of eight dispersal patterns are consistent with the previous knowledge, while three conspicuous mass dispersal periods can be identified as in the mid morning and/or around noon and/or at nightfall. As an exception, we found a ‘daytime’ pattern occurred exclusively in spring, in which mass dispersal can be seen from mid morning to late afternoon. In contrast to previous studies, we emphasize here that the seasonality has to be considered in evaluation of the diurnal flight activity. According to the seasons, a ‘three code sign’ was proposed to indicate the diel dispersal flight behaviour of a species for a year. Most of the species utilize different diel activity patterns in different seasons. In spring, the daytime pattern was the preferred type, but in summer and autumn, the evening types were the most popular patterns. We stated that the seasonal change of air temperature has a crucial role in that a pattern could be manifested in a given season or not and brings a need to change the diel dispersal pattern among seasons.

Keywords

Aquatic insect dispersal behaviour Diel flight activity Diurnal dispersal patterns Pattern shift among seasons Air temperature dependency 

Notes

Acknowledgments

This work was supported by the grant OTKA F-046653 received by Z. Csabai from the Hungarian Science Foundation. The authors’ thanks are to László Papp, Klára Kecső and Enikő Kovács (University of Debrecen, Hungary) for extensive help during field works. Many thanks to Csaba Bereczki (University of Pécs, Hungary) and Thomas G. Horvath (SUNY Oneonta, NY USA) for providing language improvements. Thanks also for the valuable and constructive comments of four anonymous reviewers.

References

  1. Behr H (1990) Untersuchungen zum Flug- und Immigrationsverhalten von Wasserkäfern der Gattung Hydroporus Claiv. (Col.: Dytiscidae). Drosera 90:77–94Google Scholar
  2. Bernáth B, Szedenics G, Molnár G, Kriska G, Horváth G (2001) Visual ecological impact of “shiny black anthropogenic products” on aquatic insects: oil reservoirs and plastic sheets as polarized traps for insects associated with water. Arch Nat Cons Landsc Res 40:89–109Google Scholar
  3. Bernáth B, Gál J, Horváth G (2004) Why is it worth flying at dusk for aquatic insects? Polarotactic water detection is easiest at low solar elevations. J Exp Biol 207:755–765PubMedCrossRefGoogle Scholar
  4. Bilton DT (1994) The flight apparatus and flying ability of Hydroporus glabriusculus (Coleoptera, Dytiscidae), with a brief review of structural modifications in flightless beetles. Entomol Tidskr 115:23–32Google Scholar
  5. Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Annu Rev Ecol Evol Syst 32:159–181CrossRefGoogle Scholar
  6. Boda P, Csabai Z (2009a) Seasonal and diel dispersal activity characteristics of Sigara lateralis (Leach, 1817) (Heteroptera: Corixidae) with special emphasis of the possible environmental factors and breeding state. Aquat Insects 31:301–314CrossRefGoogle Scholar
  7. Boda P, Csabai Z (2009b) Diel and seasonal dispersal activity patterns of aquatic Coleoptera and Heteroptera. Verh Int Verein Limnol 30:1271–1274Google Scholar
  8. Bohonak AJ, Jenkins DG (2003) Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol Lett 6:783–796CrossRefGoogle Scholar
  9. Boix D, Magnusson AK, Gascón S, Sala J, Williams DD (2011) Environmental influence on flight activity and arrival patterns of aerial colonizers of temporary ponds. Wetlands 31:1227–1240CrossRefGoogle Scholar
  10. Brown ES (1954) Report on Corixidae (Hemiptera) taken by light trap at Rothamstead Experimental Station. Proc R Entomol Soc (A) 29:17–22Google Scholar
  11. Crichton MI, Fisher D, Woiwod IP (1978) Life histories and distribution of British Trichoptera, excluding Limnephilidae and Hydroptilidae, based on the Rothamsted Insect Survey. Ecography 1:31–45CrossRefGoogle Scholar
  12. Csabai Z (2000) Vízibogarak kishatározója I. (Coleoptera: Haliplidae, Hygrobiidae, Dytiscidae, Noteridae, Gyrinidae). [A guide for the identification of water beetles of Hungary, I. (in Hungarian with English abstract)]. In: Vízi Természet- és Környezetvédelem sorozat 15. Környezetgazdálkodási Intézet, BudapestGoogle Scholar
  13. Csabai Z (2003) Vízibogarak kishatározója III. [A guide for the identification of water beetles of Hungary, III. Supplement volume. (in Hungarian with English abstract)]. In: Vízi Természet- és Környezetvédelem sorozat 17. Környezetgazdálkodási Intézet, BudapestGoogle Scholar
  14. Csabai Z, Boda P (2005) Effects of the wind speed on the migration activity of aquatic insects (Coleoptera, Heteroptera). Acta Biol Debr Suppl Oecol Hung 13:37–42Google Scholar
  15. Csabai Z, Gidó Zs, Szél G (2002) Vízibogarak kishatározója II. (Coleoptera: Georissidae, Spercheidae, Hydrochidae, Helophoridae, Hydrophilidae). [A guide for the identification of water beetles of Hungary, II. (in Hungarian with English abstract)]. In: Vízi Természet- és Környezetvédelem sorozat 16., Környezetgazdálkodási Intézet, BudapestGoogle Scholar
  16. Csabai Z, Boda P, Bernáth B, Kriska G, Horváth G (2006) A ‘polarization sun-dial’ dictates the optimal time of day for dispersal by flying aquatic insects. Freshwater Biol 51:1341–1350CrossRefGoogle Scholar
  17. Cummins KW, Merritt RW (1996) Ecology and distribution of aquatic insects. In: Merritt RW, Cummins KW (eds) An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Company, Dubuque, pp 74–86Google Scholar
  18. Danthanarayana W (ed) (1986) Insect flight: dispersal and migration. Springer, BerlinGoogle Scholar
  19. Davy-Bowker J (2002) A mark and recapture study of water beetles (Coleoptera: Dytiscidae) in a group of semi-permanent and temporary ponds. Aquat Ecol 36:435–446CrossRefGoogle Scholar
  20. de Szalai FA, Resh VH (1997) Responses of wetland invertebrates and plants important in waterfowl diets to burning and mowing of emergent vegetation. Wetlands 17:149–156CrossRefGoogle Scholar
  21. Eyre MD (2006) A strategic interpretation of beetle (Coleoptera) assemblages, biotopes, habitats and distribution, and the conservation implications. J Insect Conserv 10:151–160CrossRefGoogle Scholar
  22. Fernando CH (1958) The colonization of small freshwater habitats by aquatic insects. 1. General discussion, methods and colonization by the aquatic Coleoptera. Ceylon J Sci 1:117–154Google Scholar
  23. Fernando CH (1959) The colonization of small freshwater habitats by aquatic insects. 2. Hemiptera (the water-bugs). Ceylon J Sci 2:5–32Google Scholar
  24. Fernando CH, Galbraith D (1973) Seasonality and dynamics of aquatic insects colonizing small habitats. Verh Int Verein Theor Angew Limnol 18:1564–1575Google Scholar
  25. Fichtner E (1972) Flugvermögen und Lichtfang und Wasserkäfern (Nachtrag). Entomol Nachr 16:47–50Google Scholar
  26. Gardarsson A, Einarsson A, Jónsson E, Gislason GM, Hrafnsdóttir T, Ingvason HR, Ólafsson JS (2004) Population fluctuations of Chironomid and simuliid Diptera at Myvatn in 1977–1996. Aquat Ecol 38:209–217CrossRefGoogle Scholar
  27. Horváth G (1995) Reflection–polarization patterns at flat water surfaces and their relevance for insect polarization vision. J Theor Biol 175:27–37PubMedCrossRefGoogle Scholar
  28. Horváth G, Varjú D (1997) Polarization pattern of freshwater habitats recorded by video polarimetry in red, green and blue spectral ranges and its relevance for water detection by aquatic insects. J Exp Biol 200:1155–1163Google Scholar
  29. Horváth G, Varjú D (2004) Polarized light in animal vision—polarization patterns in nature. Springer, BerlinGoogle Scholar
  30. Horváth G, Malik P, Kriska G, Wildermuth H (2007) Ecological traps for dragonflies in a cemetery: the attraction of Sympetrum species (Odonata: Libellulidae) by horizontally polarizing black gravestones. Freshwater Biol 52:1700–1709CrossRefGoogle Scholar
  31. Horváth G, Majer J, Horváth L, Szivák I, Kriska G (2008) Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light. Naturwissenschaften 95:1093–1100PubMedCrossRefGoogle Scholar
  32. Horváth G, Blahó M, Egri Á, Kriska G, Seres I, Robertson B (2010) Reducing the maladaptive attractiveness of solar panels to polarotactic insects. Conserv Biol 24:1644–1653PubMedCrossRefGoogle Scholar
  33. Horváth G, Móra A, Bernáth B, Kriska G (2011) Polarotaxis in non-biting midges: female chironomids are attracted to horizontally polarized light. Physiol Behav 104:1010–1015PubMedCrossRefGoogle Scholar
  34. Jackson DJ (1952) Observations on the capacity for flight of water beetles. Proc R Entomol Soc Lond 27:57–70Google Scholar
  35. Jackson DJ (1956) Observations on flying and flightless water beetles. J Linn Soc Lond 43:18–42CrossRefGoogle Scholar
  36. Jackson DJ (1973) The influence of flight capacity on the distribution of aquatic Coleoptera in Fife and Kinross-shire. Entomol Gaz 24:247–293Google Scholar
  37. Jansson A (1986) The Corixidae (Heteroptera) of Europe and some adjacent regions. Acta Entomol Fenn 47:1–94Google Scholar
  38. Jónsson E, Gardarsson A, Gislason GM (1986) A new window trap used in the assessment of the flight periods of Chironomidae and Simuliidae (Diptera). Freshwater Biol 16:711–719CrossRefGoogle Scholar
  39. Kondorosy E (1999) Checklist of the Hungarian bug fauna (Heteroptera). Fol Ent Hung 60:125–152Google Scholar
  40. Kriska G, Horváth G, Andrikovics S (1998) Why do mayflies lay their eggs en masse on dry asphalt roads? Water-imitating polarized light reflected from asphalt attracts Ephemeroptera. J Exp Biol 201:2273–2286PubMedGoogle Scholar
  41. Kriska G, Csabai Z, Boda P, Malik P, Horváth G (2006) Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection–polarisation signals. Proc R Soc B 273:1667–1671PubMedCrossRefGoogle Scholar
  42. Kriska G, Bernáth B, Horváth G (2007) Positive polarotaxis in a mayfly that never leaves the water surface: polarotactic water detection in Palingenia longicauda (Ephemeroptera). Naturwissenschaften 94:148–154PubMedCrossRefGoogle Scholar
  43. Kriska G, Malik P, Szivák I, Horváth G (2008) Glass buildings on river banks as “polarized light traps” for mass-swarming polarotactic caddis flies. Naturwissenschaften 95:461–467PubMedCrossRefGoogle Scholar
  44. Kriska G, Bernáth B, Farkas R, Horváth G (2009) Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae). J Insect Physiol 55:1167–1173PubMedCrossRefGoogle Scholar
  45. Landin J (1968) Weather and diurnal periodicity of flight by Helophorus brevipalpis Bedel (Col. Hydrophilidae). Opusc Entomol 33:28–36Google Scholar
  46. Landin J (1980) Habitats, life histories, migration and dispersal by flight of two water-beetles Helophorus brevipalpis and H. strigifrons (Hydrophilidae). Holarctic Ecol 3:190–201Google Scholar
  47. Landin J, Stark E (1973) On flight thresholds for temperature and wind velocity, 24-hour flight periodicity and migration of the water beetle Helophorus brevipalpis. ZOON Suppl 1:105–114Google Scholar
  48. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, p 269Google Scholar
  49. Lerner A, Meltser N, Sapir N, Erlick C, Shashar N, Broza M (2008) Reflected polarization guides chironomid females to oviposition sites. J Exp Biol 211:3536–3543PubMedCrossRefGoogle Scholar
  50. Leston D, Gardner AE (1953) Corixidae at light: some records from Sussex, England. Entomol Gaz 4:269–272Google Scholar
  51. Lewis T, Taylor LR (1965) Diurnal periodicity of flight by insects. Trans R Entomol Soc Lond 116:393–479CrossRefGoogle Scholar
  52. Lundkvist E, Landin J, Karlsson F (2002) Dispersing diving beetles (Dytiscidae) in agricultural and urban landscapes in south-eastern Sweden. Ann Zool Fenn 39:109–123Google Scholar
  53. Miguélez D, Valladares LF (2008) Seasonal dispersal of water beetles (Coleoptera) in an agricultural landscape: a study using Moericke traps in northwest Spain. Ann Soc Entomol Fr 44:17–326Google Scholar
  54. Molnár Á, Hegedüs R, Kriska G, Horváth G (2011) Effect of cattail (Typha spp.) mowing on water beetle assemblages: changes of environmental factors and the aerial colonization of aquatic habitats. J Insect Conserv 15:389–399CrossRefGoogle Scholar
  55. Nilsson AN, Holmen M (1995) The Hydradephaga of Fennoscandia and Denmark. II. Dytiscidae. Fauna Entomol Scand 32:1–286Google Scholar
  56. Nilsson AN, Svensson BW (1995) Assemblages of dytiscid predators and culicid prey in relation to environmental factors in natural and clear-cut boreal swamp forest pools. Hydrobiologia 308:183–196CrossRefGoogle Scholar
  57. Norusis MJ (2010) PASW statistics 18 guide to data analysis. Prentice Hall, Upper Saddle RiverGoogle Scholar
  58. Nowinszky L (2003) The handbook of light trapping. Savaria University Press, SzombathelyGoogle Scholar
  59. Nowinszky L, Puskás J (2010) Possible reasons for reduced light trap catches at a full moon: shorter collecting distance or reduced flight activity? Adv Biores 1:205–220Google Scholar
  60. Ohba S, Takagi H (2005) Food shortage affects flight migration of the giant water bug Lethocerus deyrolli in the prewintering season. Limnology 6:59–90CrossRefGoogle Scholar
  61. Pajunen VI, Jansson A (1969) Dispersal of the rock pool corixids Arctocorisa carinata (Sahlb.) and Callicorixa producta (Reut.) (Heteroptera, Corixidae). Ann Zool Fenn 6:391–427Google Scholar
  62. Pajunen VI, Pajunen I (2003) Habitat selection in rock pool corixids: the effect of local density on dispersal. Hydrobiologia 495:73–78CrossRefGoogle Scholar
  63. Podani J (2001) SYNTAX 2000. Computer program for data analysis in ecology and systematics. User’s manual. Scientia, BudapestGoogle Scholar
  64. Popham EJ (1953) Observations on the migration of Corixids (Hem.) into a new aquatic habitat. Ent mon Mag 89:124–125Google Scholar
  65. Popham EJ (1964) The migration of aquatic bugs with special reference to the Corixidae (Hemiptera Heteroptera). Arch Hydrobiol 60:450–496Google Scholar
  66. Ruhí A, Boix D, Sala J, Gascón S, Quintana XD (2009) Spatial and temporal patterns of pioneer macrofauna in recently created ponds: taxonomic and functional approaches. Hydrobiologia 634:137–151CrossRefGoogle Scholar
  67. Rundle SD, Foggo A, Choiseul V, Bilton DT (2002) Are distribution patterns linked to dispersal mechanism? An investigation using pond invertebrate assemblages. Freshwater Biol 47:1571–1581CrossRefGoogle Scholar
  68. Savage AA (1989) Adults of the British aquatic Hemiptera Heteroptera: a key with ecological notes. In: F.B.A. Scientific Publication 50. Freshwater Biological Association, AmblesideGoogle Scholar
  69. Schwind R (1991) Polarization vision in water insects and insects living on a moist substrate. J Comp Physiol 169:531–540CrossRefGoogle Scholar
  70. Schwind R (1995) Spectral regions in which aquatic insects see reflected polarized light. J Comp Physiol 177:439–448CrossRefGoogle Scholar
  71. Soós N, Boda P, Csabai Z (2009) First confirmed occurrences of Notonecta maculata and N. meridionalis (Heteroptera: Notonectidae) in Hungary with notes, maps, and a key to the Notonecta species of Hungary. Folia Ent Hung 70:67–78Google Scholar
  72. Southwood TRE (1962) Migration of terrestrial arthropods in relation to habitat. Biol Rev 37:171–214CrossRefGoogle Scholar
  73. Ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (ver. 4.5). Biometris, WageningenGoogle Scholar
  74. Tshernyishev WB (1961) The time of flight of different insects to light. Zool Zh 40:1009–1018 (in Russian)Google Scholar
  75. Van den Brink PJ, Ter Braak CJF (1999) Principal response curves: analysis of time dependent multivariate responses of a biological community to stress. Environ Toxicol Chem 18:138–148CrossRefGoogle Scholar
  76. Van den Brink PJ, Den Besten PJ, Bij de Vaate A, Ter Braak CJF (2009) Principal response curves technique for the analysis of multivariate biomonitoring time series. Environ Monit Assess 152:271–281PubMedCrossRefGoogle Scholar
  77. Van der Eijk R (1983) Population dynamics of the gyrinid beetles. I. Flight activity of Gyrinus marinus Gyll. Oecologia 57:55–64CrossRefGoogle Scholar
  78. Van der Eijk R (1987) Population dynamics of the gyrinid beetle Gyrinus marinus Gyll., (Coleoptera) with special reference to its dispersal activities. Dissertation, Wageningen UniversityGoogle Scholar
  79. Wagner DL, Liebherr C (1992) Flightlessness in insects. Trends Ecol Evol 7:216–220PubMedCrossRefGoogle Scholar
  80. Weigelhofer G, Weissmair W, Waringer J (1992) Night migration activity and the influence of meteorological parameters on light-trapping for aquatic Heteroptera. Zool Anz 229:209–218Google Scholar
  81. Yamamoto Y (1951) On the phototropic response of aquatic beetles to the fluorescent light trap 1. Oyo-Kontyu 7:20–24 (in Japanese with English summary)Google Scholar
  82. Yee DA, Taylor S, Vamosi SM (2009) Beetle and plant density as cues initiating dispersal in two species of adult predaceous diving beetles. Oecologia 160:25–36PubMedCrossRefGoogle Scholar
  83. Young EC (1965) Flight muscle polymorphism in British Corixidae: ecological study. J Anim Ecol 34:353–389CrossRefGoogle Scholar
  84. Zalom FG, Grigarick AA, Way MO (1980) Diel flight periodicities of some Dytiscidae (Coleoptera) associated with California rice paddies. Ecol Entomol 5:183–187CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Zoltán Csabai
    • 1
    Email author
  • Zoltán Kálmán
    • 1
  • Ildikó Szivák
    • 1
    • 2
  • Pál Boda
    • 3
  1. 1.Department of Ecology and Hydrobiology, Institute of Environmental Sciences, Faculty of SciencesUniversity of PécsPécsHungary
  2. 2.Department of Hydrozoology, Balaton Limnological Institute, Centre for Ecological ResearchHungarian Academy of SciencesTihanyHungary
  3. 3.Department of Tisza River Research, Balaton Limnological Institute, Centre for Ecological ResearchHungarian Academy of SciencesDebrecenHungary

Personalised recommendations