Advertisement

Naturwissenschaften

, Volume 99, Issue 9, pp 705–713 | Cite as

Reward and non-reward learning of flower colours in the butterfly Byasa alcinous (Lepidoptera: Papilionidae)

  • Ikuo Kandori
  • Takafumi Yamaki
Original Paper

Abstract

Learning plays an important role in food acquisition for a wide range of insects. To increase their foraging efficiency, flower-visiting insects may learn to associate floral cues with the presence (so-called reward learning) or the absence (so-called non-reward learning) of a reward. Reward learning whilst foraging for flowers has been demonstrated in many insect taxa, whilst non-reward learning in flower-visiting insects has been demonstrated only in honeybees, bumblebees and hawkmoths. This study examined both reward and non-reward learning abilities in the butterfly Byasa alcinous whilst foraging among artificial flowers of different colours. This butterfly showed both types of learning, although butterflies of both sexes learned faster via reward learning. In addition, females learned via reward learning faster than males. To the best of our knowledge, these are the first empirical data on the learning speed of both reward and non-reward learning in insects. We discuss the adaptive significance of a lower learning speed for non-reward learning when foraging on flowers.

Keywords

Positive associative learning Appetitive learning Negative associative learning Aversive learning Aversion learning Habituation 

Notes

Acknowledgments

We sincerely thank Drs. T. Sugimoto, Y. Sakuratani, E. Yano and D. R. Papaj for their valuable advice. We also thank H. Nakai, H. Narita and Y. Kinoshita for assistance with the preliminary experiments. All experiments complied with the current laws of Japan.

References

  1. Adler LS, Irwin RE (2005) Ecological costs and benefits of defenses in nectar. Ecology 86:2968–2978CrossRefGoogle Scholar
  2. Berenbaum MR, Miliczky E (1984) Mantids and milkweed bugs: efficacy of aposematic coloration against invertebrate predators. Am Midl Nat 111:64–68CrossRefGoogle Scholar
  3. Bernays EA (1993) Aversion learning and feeding. In: Papaj DR, Lewis AC (eds) Insect learning: ecological and evolutionary perspectives. Chapman & Hall, New York, pp 1–17CrossRefGoogle Scholar
  4. Blackiston DJ, Casey ES, Weiss MR (2008) Retention of memory through metamorphosis: can a moth remember what it learned as a caterpillar? PLoS One 3:e1736. doi: e173610.1371/journal.pone.0001736 PubMedCrossRefGoogle Scholar
  5. Blackiston D, Briscoe AD, Weiss MR (2011) Color vision and learning in the monarch butterfly, Danaus plexippus (Nymphalidae). J Exp Biol 214:509–520. doi: 10.1242/jeb.048728 PubMedCrossRefGoogle Scholar
  6. Bowdish TI, Bultman TL (1993) Visual cues used by mantids in learning aversion to aposematically colored prey. Am Midl Nat 129:215–222CrossRefGoogle Scholar
  7. Burger JMS, Kolss M, Pont J, Kawecki TJ (2008) Learning ability and longevity: a symmetrical evolutionary trade-off in Drosophila. Evolution 62:1294–1304. doi: 10.1111/j.1558-5646.2008.00376.x PubMedCrossRefGoogle Scholar
  8. Chittka L, Dyer AG, Bock F, Dornhaus A (2003) Bees trade off foraging speed for accuracy. Nature 424:388. doi: 10.1038/424388a PubMedCrossRefGoogle Scholar
  9. Cnaani J, Thomson JD, Papaj DR (2006) Flower choice and learning in foraging bumblebees: effects of variation in nectar volume and concentration. Ethology 112:278–285CrossRefGoogle Scholar
  10. Costa A, Ricard I, Davison AC, Turlings TCJ (2010) Effects of rewarding and unrewarding experiences on the response to host-induced plant odors of the generalist parasitoid Cotesia marginiventris (Hymenoptera: Braconidae). J Insect Behav 23:303–318. doi: 10.1007/s10905-010-9215-y CrossRefGoogle Scholar
  11. Cunningham JP, West SA, Wright DJ (1998) Learning in the nectar foraging behaviour of Helicoverpa armigera. Ecol Entomol 23:363–369CrossRefGoogle Scholar
  12. Cunningham JP, Moore CJ, Zalucki MP, West SA (2004) Learning, odour preference and flower foraging in moths. J Exp Biol 207:87–94. doi: 10.1242/Jeb.00733 PubMedCrossRefGoogle Scholar
  13. Dicke U, Heidorn A, Roth G (2011) Aversive and non-reward learning in the fire-bellied toad using familiar and unfamiliar prey stimuli. Current Zoology 57:709–716Google Scholar
  14. Dukas R (1999) Ecological relevance of associative learning in fruit fly larvae. Behav Ecol Sociobiol 45:195–200CrossRefGoogle Scholar
  15. Dukas R (2008) Evolutionary biology of insect learning. Annu Rev Entomol 53:145–160. doi: 10.1146/annurev.ento.53.103106.093343 PubMedCrossRefGoogle Scholar
  16. Dukas R, Bernays EA (2000) Learning improves growth rate in grasshoppers. Proc Natl Acad Sci USA 97:2637–2640PubMedCrossRefGoogle Scholar
  17. Dukas R, Duan JJ (2000) Potential fitness consequences of associative learning in a parasitoid wasp. Behav Ecol 11:536–543. doi: 10.1093/beheco/11.5.536 CrossRefGoogle Scholar
  18. Dukas R, Real LA (1991) Learning foraging tasks by bees: a comparison between social and solitary species. Anim Behav 42:269–276CrossRefGoogle Scholar
  19. Dukas R, Real LA (1993) Learning constraints and floral choice behavior in bumble bees. Anim Behav 46:637–644CrossRefGoogle Scholar
  20. Dunlap AS, Stephens DW (2009) Components of change in the evolution of learning and unlearned preference. Proc R Soc B 276:3201–3208. doi: 10.1098/rspb.2009.0602 PubMedCrossRefGoogle Scholar
  21. Dyer AG, Chittka L (2004) Fine colour discrimination requires differential conditioning in bumblebees. Naturwissenschaften 91:224–227. doi: 10.1007/s00114-004-0508-x PubMedCrossRefGoogle Scholar
  22. Fukushi T (1989) Learning and discrimination of colored papers in the walking blowfly, Lucilia cuprina. J Comp Physiol, A 166:57–64CrossRefGoogle Scholar
  23. Gegear RJ, Manson JS, Thomson JD (2007) Ecological context influences pollinator deterrence by alkaloids in floral nectar. Ecol Lett 10:375–382. doi: 10.1111/j.1461-0248.2007.01027.x PubMedCrossRefGoogle Scholar
  24. Gigord LDB, Macnair MR, Stritesky M, Smithson A (2002) The potential for floral mimicry in rewardless orchids: an experimental study. Proc R Soc B 269:1389–1395. doi: 10.1098/rspb.2002.2018 PubMedCrossRefGoogle Scholar
  25. Horridge A (2007) The preferences of the honeybee (Apis mellifera) for different visual cues during the learning process. J Insect Physiol 53:877–889. doi: 10.1016/j.jinsphys.2006.12.002 PubMedCrossRefGoogle Scholar
  26. IBM SPSS (2011) IBM SPSS statistics 20. IBM Corp., New YorkGoogle Scholar
  27. Internicola AI, Page PA, Bernasconi G, Gigord LDB (2007) Competition for pollinator visitation between deceptive and rewarding artificial inflorescences: an experimental test of the effects of floral colour similarity and spatial mingling. Funct Ecol 21:864–872. doi: 10.1111/j.1365-2435.2007.01303.x CrossRefGoogle Scholar
  28. Internicola AI, Bernasconi G, Gigord LDB (2008) Should food-deceptive species flower before or after rewarding species? An experimental test of pollinator visitation behaviour under contrasting phenologies. J Evol Biol 21:1358–1365. doi: 10.1111/j.1420-9101.2008.01565.x PubMedCrossRefGoogle Scholar
  29. Josens R, Eschbach C, Giurfa M (2009) Differential conditioning and long-term olfactory memory in individual Camponotus fellah ants. J Exp Biol 212:1904–1911. doi: 10.1242/jeb.030080 Google Scholar
  30. Kandori I, Yamaki T, Okuyama S, Sakamoto N, Yokoi T (2009) Interspecific and intersexual learning rate differences in four butterfly species. J Exp Biol 212:3810–3816. doi: 10.1242/jeb.032870 PubMedCrossRefGoogle Scholar
  31. Kelber A (1996) Colour learning in the hawkmoth Macroglossum stellatarum. J Exp Biol 199:1127–1131PubMedGoogle Scholar
  32. Kelber A (2002) Pattern discrimination in a hawkmoth: innate preferences, learning performance and ecology. Proc R Soc B 269:2573–2577. doi: 10.1098/rspb.2002.2201 PubMedCrossRefGoogle Scholar
  33. Kinoshita M, Shimada N, Arikawa K (1999) Colour vision of the foraging swallowtail butterfly Papilio xuthus. J Exp Biol 202:95–102PubMedGoogle Scholar
  34. Kroutov V, Mayer MS, Emmel TC (1999) Olfactory conditioning of the butterfly Agraulis vanillae (L.) (Lepidoptera, Nymphalidae) to floral but not host-plant odors. J Insect Behav 12:833–843CrossRefGoogle Scholar
  35. Leadbeater E, Chittka L (2005) A new mode of information transfer in foraging bumblebees? Curr Biol 15:R447–R448PubMedCrossRefGoogle Scholar
  36. Lee JC, Bernays EA (1990) Food tastes and toxic effects: associative learning by the polyphagous grasshopper Schistocerca americana (Drury) (Orthoptera: Acrididae). Anim Behav 39:163–173CrossRefGoogle Scholar
  37. Lewis AC (1986) Memory constraints and flower choice in Pieris rapae. Science 232:863–865PubMedCrossRefGoogle Scholar
  38. Masters AR (1991) Dual role of pyrrolizidine alkaloids in nectar. J Chem Ecol 17:195–205CrossRefGoogle Scholar
  39. Matsumoto Y, Mizunami M (2002) Temporal determinants of long-term retention of olfactory memory in the cricket Gryllus bimaculatus. J Exp Biol 205:1429–1437PubMedGoogle Scholar
  40. Menzel R (1985) Learning in honeybees in an ecological and behavioral context. In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology. Fischer, Stuttgart, pp 55–74Google Scholar
  41. Menzel R (1993) Associative learning in honey bees. Apidologie 24:157–168CrossRefGoogle Scholar
  42. Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol, A 185:323–340. doi: 10.1007/s003590050392 CrossRefGoogle Scholar
  43. Mery F, Kawecki TJ (2003) A fitness cost of learning ability in Drosophila melanogaster. Proc R Soc B 270:2465–2469. doi: 10.1098/rspb.2003.2548 PubMedCrossRefGoogle Scholar
  44. Mery F, Kawecki TJ (2004) An operating cost of learning in Drosophila melanogaster. Anim Behav 68:589–598CrossRefGoogle Scholar
  45. Papaj DR, Snellen H, Swaans K, Vet LEM (1994) Unrewarding experiences and their effect on foraging in the parasitic wasp Leptopilina heterotoma (Hymenoptera: Eucoilidae). J Insect Behav 7:465–481CrossRefGoogle Scholar
  46. Raine NE, Chittka L (2008) The correlation of learning speed and natural foraging success in bumble bees. Proc R Soc B 275:803–808. doi: 10.1098/rspb.2007.1652 PubMedCrossRefGoogle Scholar
  47. Rodrigues D, Goodner BW, Weiss MR (2010) Reversal learning and risk-averse foraging behavior in the monarch butterfly, Danaus plexippus (Lepidoptera: Nymphalidae). Ethology 116:270–280. doi: 10.1111/j.1439-0310.2009.01737.x CrossRefGoogle Scholar
  48. Sato M, Takasu K (2000) Food odor learning by both sexes of the pupal parasitoid Pimpla alboannulatus Uchida (Hymenoptera: Ichneumonidae). J Insect Behav 13:263–272CrossRefGoogle Scholar
  49. Shafir S (1996) Color discrimination conditioning of a wasp, Polybia occidentalis (Hymenoptera: Vespidae). Biotropica 28:243–251CrossRefGoogle Scholar
  50. Simonds V, Plowright CMS (2004) How do bumblebees first find flowers? Unlearned approach responses and habituation. Anim Behav 67:379–386. doi: 10.1016/j.anbehav.2003.03.020 CrossRefGoogle Scholar
  51. Srinivasan MV, Zhang SW, Witney K (1994) Visual discrimination of pattern orientation in honeybees: performance and implication for cortical processing. Philos Trans R Soc B 343:199–210CrossRefGoogle Scholar
  52. Stephens DW (1993) Learning and behavioral ecology: incomplete information and environmental predictability. In: Papaj DR, Lewis AC (eds) Insect learning: ecological and evolutionary perspectives. Chapman & Hall, New York, pp 195–218CrossRefGoogle Scholar
  53. Swihart CA, Swihart SL (1970) Color selection and learned feeding preferences in the butterfly, Heliconius charitonius Linn. Anim Behav 18:60–64CrossRefGoogle Scholar
  54. Takasu K, Rains GC, Lewis WJ (2007) Comparison of detection ability of learned odors between males and females in the larval parasitoid Microplitis croceipes. Entomol Exp Appl 122:247–251. doi: 10.1111/j.1570-7458.2006.00511.x CrossRefGoogle Scholar
  55. Thum AS, Jenett A, Ito K, Heisenberg M, Tanimoto H (2007) Multiple memory traces for olfactory reward learning in Drosophila. J Neurosci 27:11132–11138. doi: 10.1523/jneurosci.2712-07.2007 PubMedCrossRefGoogle Scholar
  56. Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol, A 157:263–277CrossRefGoogle Scholar
  57. Vergoz V, Roussel E, Sandoz JC, Giurfa M (2007) Aversive learning in honeybees revealed by the olfactory conditioning of the sting extension reflex. PLoS One 2:e288. doi: e28810.1371/journal.pone.0000288 PubMedCrossRefGoogle Scholar
  58. Waser NM (1986) Flower constancy - definition, cause, and measurement. Am Nat 127:593–603CrossRefGoogle Scholar
  59. Weiss MR (1997) Innate colour preferences and flexible colour learning in the pipevine swallowtail. Anim Behav 53:1043–1052CrossRefGoogle Scholar
  60. Weiss MR, Papaj DR (2003) Colour learning in two behavioural contexts: how much can a butterfly keep in mind? Anim Behav 65:425–434. doi: 10.1006/anbe.2003.2084 CrossRefGoogle Scholar
  61. Worden BD, Papaj DR (2005) Flower choice copying in bumblebees. Biol Lett 1:504–507. doi: 10.1098/rsbl.2005.0368 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Laboratory of Entomology, Faculty of AgricultureKinki UniversityNaraJapan

Personalised recommendations