, Volume 99, Issue 8, pp 627–636 | Cite as

Two pathways ensuring social harmony

  • Matthias Konrad
  • Tobias Pamminger
  • Susanne Foitzik
Original Paper


Reproductive division of labour is a characteristic trait of social insects. The dominant reproductive individual, often the queen, uses chemical communication and/or behaviour to maintain her social status. Queens of many social insects communicate their fertility status via cuticle-bound substances. As these substances usually possess a low volatility, their range in queen–worker communication is potentially limited. Here, we investigate the range and impact of behavioural and chemical queen signals on workers of the ant Temnothorax longispinosus. We compared the behaviour and ovary development of workers subjected to three different treatments: workers with direct chemical and physical contact to the queen, those solely under the influence of volatile queen substances and those entirely separated from the queen. In addition to short-ranged queen signals preventing ovary development in workers, we discovered a novel secondary pathway influencing worker behaviour. Workers with no physical contact to the queen, but exposed to volatile substances, started to develop their ovaries, but did not change their behaviour compared to workers in direct contact to the queen. In contrast, workers in queen-separated groups showed both increased ovary development and aggressive dominance interactions. We conclude that T. longispinosus queens influence worker ovary development and behaviour via two independent signals, both ensuring social harmony within the colony.


Dominance interactions Chemical communication Cuticular hydrocarbons Fertility signalling Reproductive division of labour Social insects Ants 



We like to thank the editor and three anonymous reviewers for their time and constructive criticism and Inon Scharf, Volker Witte and Andreas Modlmeier for helpful comments on earlier versions of the manuscript. The first and second authors appear in alphabetical order and contributed equally to this paper.


T.P. was funded by the Deutsche Forschungsgemeinschaft Research Unit 1078 grant Fo 298 / 9-1.

Supplementary material

114_2012_943_Fig4_ESM.jpg (54 kb)
Fig. S1

2D MDS stress plot separating the cuticular hydrocarbon (CHC) profile of aggressive workers (triangle upwards), non-aggressive workers (triangle downwards) and queens (circle). Stress = 0.18 (JPEG 54 kb)

114_2012_943_MOESM1_ESM.tif (42 kb)
High-resolution image (TIFF 41 kb)
114_2012_943_MOESM2_ESM.doc (52 kb)
ESM 2 (DOC 51 kb)


  1. Achenbach A, Witte V, Foitzik S (2010) Brood exchange experiments and chemical analysis shed light on slave rebellion in ants. Behav Ecol 21(5):948–956. doi: 10.1093/beheco/arq008 CrossRefGoogle Scholar
  2. Alloway TM, Buschinger A, Talbot M, Stuart R, Thomas C (1982) Polygyny and polydomy in three North American species of the ant genus Leptothorax Mayr (Hymenoptera: Formicidae). Psyche 89:249–274. doi: 10.1155/1982/64124 CrossRefGoogle Scholar
  3. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E Plymouth, UKGoogle Scholar
  4. Attygalle AB, Morgan ED (1984) Chemicals from the glands of ants. Chem Soc Rev 13(3):245–278CrossRefGoogle Scholar
  5. Bourke AFG (1988) Worker reproduction in the higher eusocial Hymenoptera. Quat Rev Biol 63(3):291–311CrossRefGoogle Scholar
  6. Brandt M, Heinze J, Schmitt T, Foitzik S (2006) Convergent evolution of the Dufour's gland secretion as a propaganda substance in the slave-making ant genera Protomognathus and Harpagoxenus. Insect Soc 53(3):291–299. doi: 10.1007/s00040-006-0871-z CrossRefGoogle Scholar
  7. Brunner E, Kroiss J, Trindl A, Heinze J (2011) Queen pheromones in Temnothorax ants: control or honest signal? BMC Evol Biol 11:55PubMedCrossRefGoogle Scholar
  8. Cole BJ (1981) Dominance hierarchies in Leptothorax ants. Science 212(4490):83–84. doi: 10.1126/science.212.4490.83 PubMedCrossRefGoogle Scholar
  9. Cole BJ (1986) The social behaviour of Leptothorax allardycei (Hymenoptera, Formicinae)—time budgets and the evolution of worker reproduction. Behav Ecol Sociobiol 18(3):165–173. doi: 10.1007/bf00290820 CrossRefGoogle Scholar
  10. Coston DJ, Gill RJ, Hammond RL (2011) No evidence of volatile chemicals regulating reproduction in a multiple queen ant. Naturwissenschaften 98(7):625–629PubMedCrossRefGoogle Scholar
  11. Dapporto L, Lambardi D, Turillazzi S (2008) Not only cuticular lipids: first evidence of differences between foundresses and their daughters in polar substances in the paper wasp Polistes dominulus. J Insect Physiol 54(1):89–95. doi: 10.1016/j.jinsphys.2007.08.005 PubMedCrossRefGoogle Scholar
  12. Dejean A, Passera L (1974) Queen inhibition of egg laying by workers in ant Temnothorax-recedens (NYL) (Formicidae, Myrmicinae). Insect Soc 21(4):343–355. doi: 10.1007/bf02331564 CrossRefGoogle Scholar
  13. Dietemann V, Liebig J, Hölldobler B, Peeters C (2005) Changes in the cuticular hydrocarbons of incipient reproductives correlate with triggering of worker policing in the bulldog ant Myrmecia gulosa. Behav Ecol Sociobiol 58:486–496. doi: 10.1007/s00265-005-0939-1 CrossRefGoogle Scholar
  14. Endler A, Liebig J, Schmitt T, Parker JE, Jones GR, Schreier P, Hölldobler B (2004) Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. Proc Natl Acad Sci USA 101(9):2945–2950. doi: 10.1073/pnas.0308447101 PubMedCrossRefGoogle Scholar
  15. Endler A, Liebig J, Hölldobler B (2006) Queen fertility, egg marking and colony size in the ant Camponotus floridanus. Behav Ecol Sociobiol 59(4):490–499. doi: 10.1007/s00265-005-0073-0 CrossRefGoogle Scholar
  16. Endler A, Hölldobler B, Liebig J (2007) Lack of physical policing and fertility cues in egg-laying workers of the ant Camponotus floridanus. Anim Behav 74:1171–1180. doi: 10.1016/j.anbehav.2006.10.031 CrossRefGoogle Scholar
  17. Errard C, Le Guisquet AM, Christidès JP, Mercier JL, Lenoir A, Hefetz A (2008) Early learning of volatile chemical cues leads to interspecific recognition between two ant species. Insect Soc 55:115–122. doi: 10.1007/s00040-008-0979-4 CrossRefGoogle Scholar
  18. Hamilton WD (1964a) The genetical evolution of social behaviour. I. J Theo Biol 7(1):1–16CrossRefGoogle Scholar
  19. Hamilton WD (1964b) The genetical evolution of social behaviour. II. J Theor Biol 7(1):17–52PubMedCrossRefGoogle Scholar
  20. Hammond RL, Keller L (2004) Conflict over male parentage in social insects. PLoS Biol 2(9):1472–1482CrossRefGoogle Scholar
  21. Hanus R, Vrkoslav V, Hrdy I, Cvacka J, Sobotnik J (2010) Beyond cuticular hydrocarbons: evidence of proteinaceous secretion specific to termite kings and queens. Proc R Soc B 277(1684):995–1002. doi: 10.1098/rspb.2009.1857 PubMedCrossRefGoogle Scholar
  22. Heinze J, D'Ettorre P (2009) Honest and dishonest communication in social Hymenoptera. J Exp Biol 212(12):1775–1779. doi: 10.1242/jeb.015008 PubMedCrossRefGoogle Scholar
  23. Heinze J, Ortius D (1991) Social organization of Leptothorax acervorum (Hymenoptera, Formicidae) from Alaska. Psyche (Cambridge) 98(2–3):227–240. doi: 10.1155/1991/21921 Google Scholar
  24. Heinze J, Hölldobler B, Peeters C (1994) Conflict and cooperation in ant societies. Naturwissenschaften 81(11):489–497. doi: 10.1007/BF01132680 CrossRefGoogle Scholar
  25. Heinze J, Puchinger W, Hölldobler B (1997) Worker reproduction and social hierarchies in Leptothorax ants. Anim Behav 54:849–864. doi: 10.1006/anbe.1996.0511 PubMedCrossRefGoogle Scholar
  26. Hernandez JV, Lopez H, Jaffe K (2002) Nestmate recognition signals of the leaf-cutting ant Atta laevigata. J Insect Physiol 48:287–295. doi: 10.1016/S0022-1910(01)00173-1 PubMedCrossRefGoogle Scholar
  27. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, CambridgeGoogle Scholar
  28. Holman L, Dreier S, D' Ettorre P (2010) Selfish strategies and honest signalling: reproductive conflicts in ant queen associations. Proc Roy Soc B 277(1690):2007–2015. doi: 10.1098/rspb.2009.2311 CrossRefGoogle Scholar
  29. Howard RW, Blomquist GJ (2005) Ecological, behavioural, and biochemical aspects of insect hydrocarbons. Ann Rev Entomol 50:371–393. doi: 10.1146/annurev.ento.50.071803.130359, Palo AltoCrossRefGoogle Scholar
  30. Katzav-Gozansky T, Boulay R, Ionescu-Hirsh A, Hefetz A (2008) Nest volatiles as modulators of nestmate recognition in the ant Camponotus fellah. J Insect Physiol 54:378–385. doi: 10.1016/j.jinsphys.2007.10.008 PubMedCrossRefGoogle Scholar
  31. Keller L, Nonacs P (1993) The role of queen pheromones in social insects—queen control or queen signal. Anim Behav 45(4):787–794. doi: 10.1006/anbe.1993.1092 CrossRefGoogle Scholar
  32. Le Conte Y, Hefetz A (2008) Primer pheromones in social Hymenoptera. Annu Rev Entomol 53:523–542. doi: 10.1146/annurev.ento.52.110405.091434 PubMedCrossRefGoogle Scholar
  33. Liebig J, Peeters C, Hölldobler B (1999) Worker policing limits the number of reproductives in a ponerine ant. Proc R Soc Lond B 266:1865–1870. doi: 10.1098/rspb.1999.0858 CrossRefGoogle Scholar
  34. Maisonnasse A, Lenoir JC, Beslay D, Crauser D, Le Conte Y (2010) E-β-Ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera). PLoS One 5(10):e13531. doi: 10.1371/journal.pone.0013531 PubMedCrossRefGoogle Scholar
  35. Malka O, Shnieor S, Hefetz A, Katzav-Gozansky T (2007) Reversible royalty in worker honeybees (Apis mellifera) under the queen influence. Behav Ecol Sociobiol 61:465–473. doi: 10.1007/s00265-006-0274-1 CrossRefGoogle Scholar
  36. Matsuura K, Himuro C, Yokoi T, Yamamoto Y, Vargo EL, Keller L (2010) Identification of a pheromone regulating caste differentiation in termites. Proc Natl Acad Sci USA 107(29):12963–12968. doi: 10.1073/pnas.1004675107 PubMedCrossRefGoogle Scholar
  37. Monnin T (2006) Chemical recognition of reproductive status in social insects. Ann Zool Fenn 43:515–530Google Scholar
  38. Ortius D, Heinze J (1999) Fertility signaling in queens of a North American ant. Behav Ecol Sociobiol 45:151–159. doi: 10.1007/s002650050548 CrossRefGoogle Scholar
  39. Peeters C, Liebig J (2009) Organisation of insect societies. From Genome to sociocomplexity. Harvard University Press, Cambridge, pp 220–242Google Scholar
  40. Ratnieks FLW (1988) Reproductive harmony via mutual policing by workers in eusocial Hymenoptera. Am Nat 132(2):217–236. doi: 10.1086/284846 CrossRefGoogle Scholar
  41. Ratnieks FLW, Reeve HK (1992) Conflict in single queen hymenopteran societies—the structure of conflict and processes that reduce conflict in advanced eusocial species. J Theo Biol 158(1):33–65. doi: 10.1016/s0022-5193(05)80647-2 CrossRefGoogle Scholar
  42. Rocca JR, Tumlinson JH, Glancey BM, Lofgren CS (1983) The queen recognition pheromone of Solenopsis invicta, preparation of (E)-6-(1-pentenyl)-2H-pyran-2-one. Tetrahedron Lett 24(18):1889–1892CrossRefGoogle Scholar
  43. Seeley TD (1979) Queen substance dispersal by messenger workers in honeybee colonies. Behav Ecol Sociobiol 5(4):391–415. doi: 10.1007/bf00292527 CrossRefGoogle Scholar
  44. Sherman PW, Lacey EA, Reeve HK, Keller L (1995) The eusociality continuum. Behav Ecol 6(1):102–108. doi: 10.1093/beheco/6.1.102 CrossRefGoogle Scholar
  45. Stroeymeyt N, Brunner E, Heinze J (2007) "Selfish worker policing" controls reproduction in a Temnothorax ant. Behav Ecol Sociobiol 61(9):1449–1457. doi: 10.1007/s00265-007-0377-3 CrossRefGoogle Scholar
  46. Trivers RL, Hare H (1976) Haploidploidy and the evolution of the social insect. Science 191(4224):249–263. doi: 10.1126/science.1108197 PubMedCrossRefGoogle Scholar
  47. Vander Meer RK, Breed MD, Espelie KE, Winston ML (1998) Pheromone communication in social insects: ants, wasps, bees, and termites. Westview, BoulderGoogle Scholar
  48. Wanner KW, Nichols AS, Walden KKO, Brockmann A, Luetje CW, Robertson HM (2007) A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid. Proc Natl Acad Sci USA 104(36):14383–14388. doi: 10.1073/pnas.0705459104 PubMedCrossRefGoogle Scholar
  49. Wilson EO (1971) The insect societies. Harvard University Press, CambridgeGoogle Scholar
  50. Woyciechowski M, Lomnicki A (1987) Multiple mating of queens and the sterility of workers among eusocial Hymenoptera. J Theor Biol 128:317–327. doi: 10.1016/S0022-5193(87)80074-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Matthias Konrad
    • 1
  • Tobias Pamminger
    • 2
  • Susanne Foitzik
    • 2
  1. 1.Institute of Science and Technology Austria (IST Austria)KlosterneuburgAustria
  2. 2.Institute of ZoologyJohannes Gutenberg University of MainzMainzGermany

Personalised recommendations