Naturwissenschaften

, Volume 99, Issue 8, pp 617–626 | Cite as

Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus

  • Karen Hardy
  • Stephen Buckley
  • Matthew J. Collins
  • Almudena Estalrrich
  • Don Brothwell
  • Les Copeland
  • Antonio García-Tabernero
  • Samuel García-Vargas
  • Marco de la Rasilla
  • Carles Lalueza-Fox
  • Rosa Huguet
  • Markus Bastir
  • David Santamaría
  • Marco Madella
  • Julie Wilson
  • Ángel Fernández Cortés
  • Antonio Rosas
Original Paper

Abstract

Neanderthals disappeared sometime between 30,000 and 24,000 years ago. Until recently, Neanderthals were understood to have been predominantly meat-eaters; however, a growing body of evidence suggests their diet also included plants. We present the results of a study, in which sequential thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) were combined with morphological analysis of plant microfossils, to identify material entrapped in dental calculus from five Neanderthal individuals from the north Spanish site of El Sidrón. Our results provide the first molecular evidence for inhalation of wood-fire smoke and bitumen or oil shale and ingestion of a range of cooked plant foods. We also offer the first evidence for the use of medicinal plants by a Neanderthal individual. The varied use of plants that we have identified suggests that the Neanderthal occupants of El Sidrón had a sophisticated knowledge of their natural surroundings which included the ability to select and use certain plants.

Keywords

Neanderthals El Sidrón Dental calculus Diet Self-medication 

Notes

Acknowledgments

SEM was conducted at the Imaging and Cytometry Unit, University of York. Stephen Buckley was funded by grant WT074315, TD/Py-GC-MS was conducted in the Department of Civil Engineering and Geosciences Newcastle University; Paul Donohoe and Ian Harrison are thanked for technical assistance. Field work was supported by Consejería de Cultura del Principado de Asturias, and some technical aspects by Ministerio de Ciencia e Innovación, Spain, grant CGL2006-02131. Thanks to Megazyme International for providing the starch assay kit and to William Milliken, Royal Botanic Gardens, Kew, for his confirmation that yarrow and camomile are most likely to have been ingested for medicinal purposes as they have little nutritional value. We thank the anonymous reviewers for their suggestions and we extend our thanks to Dr Joann Fletcher for her many suggested literary improvements.

Supplementary material

114_2012_942_MOESM1_ESM.pdf (690 kb)
ESM 1(PDF 690 kb)
114_2012_942_MOESM2_ESM.pdf (25 kb)
ESM 2(PDF 24 kb)
114_2012_942_MOESM3_ESM.pdf (346 kb)
ESM 1(PDF 346 kb)
114_2012_942_MOESM4_ESM.pdf (140 kb)
ESM 4(PDF 139 kb)

References

  1. Barton RNE (2000) Mousterian hearths and shellfish: late Neanderthal activities in Gibraltar. In: Stringer CB, Barton RNE, Finlayson JC (eds) Neanderthals on the edge: 150th anniversary conference of the Forbes' Quarry discovery, Gibraltar. Oxbow Books, Oxford, pp 211–220Google Scholar
  2. Bergström J (1999) Tobacco smoking and supragingival dental calculus. J Clin Periodontol 26:541–547PubMedCrossRefGoogle Scholar
  3. Bergström J (2005) Tobacco smoking and subgingival dental calculus. J Clin Periodontol 32:81–88PubMedCrossRefGoogle Scholar
  4. Blumenschine RJ, Peters CR, Masao FT, Clarke RJ, Deino AL, Hay RL, Swisher CC, Stanistreet IG, Ashley GM, McHenry LJ, Sikes NE, van der Merwe NJ, Tactikos JC, Cushing AE, Deocampo D, Njau JK, Ebert JI (2003) Late Pliocene homo and hominid land use from Western Olduvai Gorge, Tanzania. Science 299:1217–1221PubMedCrossRefGoogle Scholar
  5. Bocherens H (2009) Neanderthal dietary habits: review of the isotopic evidence. In: Hublin JJ and Richards MP (eds.) The Evolution of Hominin Diets: Integrating Approaches to the Study of Palaeolithic Subsistence. Springer, http://www.springer.com/social+sciences/archaeology+%26+anthropology/book/978-1-4020-9698-3, pp 241–250
  6. Boeda E, Bonilauri S, Connan J, Jarvie D, Mercier N, Tobey M, Valladas H, Al-Sakhel H, Muhesen S (2008) Middle Palaeolithic bitumen use at Umm el Tiel around 70,000 BP. Antiquity 82:853–861Google Scholar
  7. Buckley SA, Stott AW, Evershed RP (1999) Studies of organic residues from ancient Egyptian mummies using high temperature-gas chromatography-mass spectrometry and sequential thermal desorption-gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry. Analyst 124:443–452PubMedCrossRefGoogle Scholar
  8. Burke A (2000) Hunting in the Middle Palaeolithic. Int J Osteoarchaeol 10:281–285CrossRefGoogle Scholar
  9. Charlier P, Huynh-Charlier I, Munoz O, Billard M, Brun L, Grandmaison GLD (2010) The microscopic (optical and SEM) examination of dental calculus deposits (DCD). Potential interest in forensic anthropology of a bio-archaeological method. Legal Medicine 12:163–171PubMedCrossRefGoogle Scholar
  10. Collins MJ, Copeland L (2011) Ancient starch: cooked or just old? Proc Natl Acad Sci USA 108(22):E145PubMedCrossRefGoogle Scholar
  11. Collison R (1968) Starch retrogradation. In: Radley JA (ed) Starch and its derivatives. Chapman and Hall Ltd, London, pp 168–193Google Scholar
  12. Connan J (1999) Use and trade of bitumen in antiquity and prehistory: molecular archaeology reveals secrets of past civilisations. Phil Trans Royal Soc B (Biological Sciences) 354:33–50CrossRefGoogle Scholar
  13. Copeland L, Blazek J, Salman H, Tang CM (2009) Form and functionality of starch. Food Hydrocolloid 23:1527–1534CrossRefGoogle Scholar
  14. Cousins D, Huffman MA (2002) Medicinal properties in the diet of gorillas: an ethnopharmacological evaluation. African Study Monographs 23:65–89Google Scholar
  15. de Torres T, Ortiz JE, Grün R, Eggins S, Valladas H, Mercier N, Tisnérat-Laborde N, Julià R, Soler V, Martínez E, Sánchez-Moral S, Cañaveras JC, Lario J, Lalueza-Fox C, Badal E, Rosas A, Santamaría D, de la Rasilla M, Fortea J (2010) Dating of the hominid (Homo neanderthalensis) remains accumulation from El Sidrón Cave (Piloña, Asturias, North Spain): an example of multi-methodological approach to the dating of Upper Pleistocene sites. Archaeometry 52:680–705Google Scholar
  16. Eglinton G, Hamilton RJ, Raphael RA, Gonzalez AG (1962) Hydrocarbon constituents of the wax coatings of plant leaves: a taxonomic survey. Nature 193:739–742PubMedCrossRefGoogle Scholar
  17. El Zaatari S, Grine FE, Ungar PS, Hublin JJ (2011) Ecogeographic variation in Neandertal dietary habits: evidence from occlusal molar microwear texture analysis. J Hum Evol 61:411–424PubMedCrossRefGoogle Scholar
  18. Estalrrich A, Rosas A, García-Vargas S, García-Tabernero A, Santamaría D, de la Rasilla M (2011) Brief communication: subvertical grooves on interproximal wear facets from the El Sidrón (Asturias, Spain) Neanderthal dental sample. Am J Phys Anthropol 144:154–161PubMedCrossRefGoogle Scholar
  19. Finlayson C, Pacheco FG, Rodríguez-Vidal J, Fa DA, Gutierrez López JM, Pérez AS, Finlayson G, Allue E, Baena Preysler J, Cáceres I, Carrión JS, Fernández Jalvo Y, Gleed-Owen CP, Jimenez Espejo FJ, López P, López Sáez JA, Riquelme Cantal JA, Sánchez Marco A, Giles Guzman FK, Fuentes N, Valarino CV, Villalpando A, Stringer CB, Martinez Ruiz F, Sakamoto T (2006) Late survival of Neanderthals at the southernmost extreme of Europe. Nature 443:850–853PubMedCrossRefGoogle Scholar
  20. Hardy BL (2010) Climatic variability and plant food distribution in Pleistocene Europe: implications for Neanderthal diet and subsistence. Quat Sci Rev 29:662–679CrossRefGoogle Scholar
  21. Hardy K, Blakeney T, Copeland L, Kirkham J, Wrangham R, Collins M (2009) Starch granules, dental calculus and new perspectives on ancient diet. J Archaeol Sci 36:248–255CrossRefGoogle Scholar
  22. Hardy K, van de Locht R, Wilson J, Tugay O (2013) Starch granules and complex carbohydrates at Çatalhöyük. In: Hodder I (ed) Humans and landscapes of Çatalhöyük: reports from the 2000-2008 seasons. Los Angeles: Cotsen; Ankara: British Institute of Archaeology at AnkaraGoogle Scholar
  23. Henry AG, Brooks AS, Piperno DR (2011) Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proc Natl Acad Sci USA 108:486–491PubMedCrossRefGoogle Scholar
  24. Hillson S (2001) Recording dental caries in archaeological human remains. Int J Osteoarchaeol 11:249–289CrossRefGoogle Scholar
  25. Huffman MA (1997) Current evidence for self-medication in primates: a multidisciplinary perspective. Yearb Phys Anthropol 40:171–200CrossRefGoogle Scholar
  26. Huffman MA (2003) Animal self-medication and ethno-medicine: exploration and exploitation of the medicinal properties of plants. Proc Nutr Soc 62:371–381PubMedCrossRefGoogle Scholar
  27. Huffman MA, Vitazkova SK (2007) Primates, plants, and parasites: the evolution of animal self-medication and ethnomedicine. In Elisabetsky E, Etkin NL (eds.) Ethnopharmacology, e-book http://www.eolss.net, Eolss Publishers, Oxford
  28. Jones M (2009) Moving North: Archaeobotanical Evidence for Plant Diet in Middle and Upper Paleolithic Europe. In Hublin JJ and Richards MP (eds.) The Evolution of Hominin Diets: Integrating Approaches to the Study of Palaeolithic Subsistence. Springer, http://www.springer.com/social+sciences/archaeology+%26+anthropology/book/978-1-4020-9698-3, pp 171–180
  29. Kaplan L, Smith MB, Sneddon LA (1992) Cereal grain phytoliths of southwest Asia and Europe. In Rapp, G Jr, Mulholland SC (eds) Phytolith systematics—emerging issues. Advances in Archaeological Museum Science Vol.1 Plenum Press, New York, pp149–174Google Scholar
  30. Krief S, Hladik CM, Haxaire C (2005) Ethnomedicinal and bioactive properties of plants ingested by wild chimpanzees in Uganda. J Ethnopharmacol 101:1–15PubMedCrossRefGoogle Scholar
  31. Kruge MK, Suárez-Ruiz NI (1991) Organic geochemistry and petrography of Spanish oil shales. Fuel 70:1298–1302CrossRefGoogle Scholar
  32. Laden G, Wrangham R (2005) The rise of the hominids as an adaptive shift in fallback foods: plant underground storage organs (USOs) and australopith origins. J Hum Evol 49:482–498. doi:10.1016/j.jhevol.2005.05.007 PubMedCrossRefGoogle Scholar
  33. Lalueza C, Pérez-Pérez A (1993) The diet of the Neanderthal child Gibralter 2 (Devil's Tower) through the study of the vestibular striation pattern. J Hum Evol 24:29–41CrossRefGoogle Scholar
  34. Lalueza-Fox C, Gigli E, de la Rasilla M, Fortea J, Rosas A (2009) Bitter taste perception in Neanderthals through the analysis of the TAS2R38 gene. Biol Letters 5:809–811CrossRefGoogle Scholar
  35. Lalueza-Fox C, Rosas A, Estalrrich A, Gigli E, Campos PF, GarcíaTabernero A, García-Vargas S, Sánchez-Quinto F, Ramírez O, Civit S, Bastir M, Huguet R, Santamaría D, Gilbert MPT, Willerslev E, de la Rasilla M (2011) Genetic evidence for patrilocal mating behaviour among Neandertal groups. Proc Natl Acad Sci 108:250–253PubMedCrossRefGoogle Scholar
  36. Laseter JL, Weete J, Weber DJ (1968) Alkanes, fatty acid methyl esters, and free fatty acids in surface wax of Ustilago maydis. Phytochemistry 7:1177–1181CrossRefGoogle Scholar
  37. Lev E, Kislev M, Bar Yosef O (2005) Mousterian vegetal food in Kebara Cave, Mt. Carmel. J Arch Sci 32:475–484CrossRefGoogle Scholar
  38. Lieverse AR (1999) Diet and the aetiology of dental calculus. Int J Osteoarchaeol 9:219–232CrossRefGoogle Scholar
  39. Lisonbee LD, Villalba JJ, Provenza FD, Hall JO (2003) Tannins and self-medication: implications for sustainable parasite control in herbivores. P Nutr Soc 62:361–370. doi:10.1079/PNS2003243 CrossRefGoogle Scholar
  40. Madella M, Jones MK, Goldberg P, Goren Y, Hovers E (2002) The exploitation of plant resources by Neanderthals in Amud Cave (Israel): the evidence from Phytolith studies. J Arch Sci 29:703–719CrossRefGoogle Scholar
  41. Maudinas B, Villoutreix J (1977) Fatty acid methyl esters in photosynthetic bacteria. Phytochemistry 16:1299–1300CrossRefGoogle Scholar
  42. McCobb LME, Briggs DEG, Evershed RP, Hall AR, Hall RA (2001) Preservation of fossil seeds from a 10th Century AD Cess Pit at Coppergate, York. J Arch Sci 28:929–940CrossRefGoogle Scholar
  43. Miller G (2011) Sweet here, salty there: evidence for a taste map in the Mammalian Brain. Science 333(6047):1213PubMedCrossRefGoogle Scholar
  44. O’Connell JF, Hawkes K, Blurton Jones NG (1999) Grandmothering and the evolution of Homo erectus. J Hum Evol 36:461–485PubMedCrossRefGoogle Scholar
  45. Pap I, Tillier AM, Arensburg B, Weiner SM (1995) First scanning electron microscope analysis of dental calculus from European Neanderthals: Subalyuk, (Middle Palaeolithic, Hungary). Preliminary report. B Soc Ant Paris 7:69–72CrossRefGoogle Scholar
  46. Pérez-Pérez A, Espurz V, Bermúdez de Castro JM, de Lumley MA, Turbón D (2003) Non-occlusal dental microwear variability in a sample of Middle and Late Pleistocene human populations from Europe and the Near East. J Hum Evol 44:497–513PubMedCrossRefGoogle Scholar
  47. Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, Werner J, Villanea FA, Mountain JL, Misra R, Carter NP, Lee C, Stone AC (2007) Diet and the evolution of human amylase gene copy number variation. Nat Genet 39:1256–1260PubMedCrossRefGoogle Scholar
  48. Piperno DR, Dillehay TD (2008) Starch grains on human teeth reveal early broad crop diet in northern Peru. Proc Natl Acad Sci USA 105:19622–19627PubMedCrossRefGoogle Scholar
  49. Ré-Poppi N, Santiago-Silva MR (2002) Identification of polycyclic aromatic hydrocarbons and methoxylated phenols in wood smoke emitted during production of charcoal. Chromatographia 55:475–481CrossRefGoogle Scholar
  50. Richards MP, Trinkaus E (2009) Isotopic evidence for the diets of European Neanderthals and early modern humans. Proc Natl Acad Sci 106:16034–16039PubMedCrossRefGoogle Scholar
  51. Rodriguez E, Wrangham RW (1993) Zoopharmacognosy: the use of medicinal plants by animals. In: Downum KR, Romeo JT, Stafford H (eds) Recent advances in phytochemistry, vol. 27: phytochemical potential of tropic plants, vol 27. Plenum, New York, pp 89–105Google Scholar
  52. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1998) Sources of fine organic aerosol 9. Pine, oak, and synthetic log combustion in residential fireplaces. Environ Sci Technol 32:13–22CrossRefGoogle Scholar
  53. Rosas A, Martínez-Maza C, Bastir M, García-Tabernero A, Lalueza-Fox C, Huguet R, Ortiz JE, Julià R, Soler V, de Torres T, Martínez E, Cañaveras JC, Sánchez-Moral S, Cueva S, Lario J, Santamaría D, de la Rasilla M, Fortea J (2006) Paleobiology and comparative morphology of a late Neandertal sample from El Sidrón, Asturias, Spain. Proc Natl Acad Sci 103:19266–19271PubMedCrossRefGoogle Scholar
  54. Rosas A, Estalrrich A, García-Tabernero A, Basti M, García-Vargas S, Sánchez-Meseguer A, Huguet R, Lalueza-Fox C, Peña-Melián A, Kranioti E, Santamaría D, Rasilla de la M, Fortea J. (2012) Les Néandertaliens d’El Sidrón (Asturies, Espagne). Actualisation d’un nouvel échantillon. L’Anthropologie 116:57–76Google Scholar
  55. Sandgathe DM, Hayden B (2003) Did Neanderthals eat inner bark? Antiquity 77:709–718Google Scholar
  56. Scott GR, Poulson SR (2012) Stable carbon and nitrogen isotopes of human dental calculus: a potentially new non-destructive proxy for paleodietary analysis. J Archaeol Sci 39:1338–1393CrossRefGoogle Scholar
  57. Seng TH, Tahir NM, Abas MR (2007) Aliphatic and PAHs emissions from open burning of selected tropical woods. Malaysian J Anal Sci 11:36–41Google Scholar
  58. Senter SD, Horvat RJ, Forbus WR (1983) Comparative GLC-MS analysis of phenolic acids of selected tree nuts. J Food Sci 48:798–799CrossRefGoogle Scholar
  59. Shorland FB (1962) The comparative aspects of fatty acid occurrence and distribution. In: Florkin M, Mason HS (eds) Comparative biochemistry Vol 3. Academic, New York, pp 1–102Google Scholar
  60. Singer MS, Mace KC, Bernays EA (2009) Self-medication as adaptive plasticity: increased ingestion of plant toxins by parasitized caterpillars. PLoS One 4(3):e4796PubMedCrossRefGoogle Scholar
  61. Vandermeersch B, Arensburg B, Tillier AM, Rak Y, Weiner S, Spiers M, Aspillaga . (1994). Middle Palaeolithic dental bacteria from Kebara, Israël. C R Acad Sci Paris 319:727–731Google Scholar
  62. Varlet V, Knockaert C, Prost C, Serot T (2006) Comparison of odor-active volatile compounds of fresh and smoked salmon. J Agric Food Chem 54:3391–3401PubMedCrossRefGoogle Scholar
  63. Williams PFV, Douglas AG (1986) Organic Geochemistry of British Kimmeridge clay 2. Acyclic isoprenoid alkanes in Kimmeridge shale oils. Fuel 65:1728–1734CrossRefGoogle Scholar
  64. Wilson J, Hardy K, Allen R, Copeland L, Wrangham R, Collins M (2010) Automated classification of starch granules using supervised pattern recognition of morphological properties. J Archaeol Sci 37:594–604CrossRefGoogle Scholar
  65. Wood RE, Higham TFG, de Torres T, Tisnerát-Laborde N, Vallardas H, Ortiz JE, Lalueza-Foz C, Sánchez-Moral S, Cañaveras JC, Rosas A, Santamaría D, de la Rasilla M (2012) A new date for the Neanderthals from El Sidrón Cave (Asturias, Northern Spain). Archaeometry. doi:10.1111/j.1475-4754.2012.00671.x
  66. Wrangham RW, Holland Jones J, Laden G, Pilbeam D, Conklin-Brittain NL (1999) The raw and the stolen. Cooking and the ecology of human origins. Curr Anthropol 40:567–594PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Karen Hardy
    • 1
  • Stephen Buckley
    • 2
  • Matthew J. Collins
    • 2
  • Almudena Estalrrich
    • 3
  • Don Brothwell
    • 2
  • Les Copeland
    • 4
  • Antonio García-Tabernero
    • 3
  • Samuel García-Vargas
    • 3
  • Marco de la Rasilla
    • 5
  • Carles Lalueza-Fox
    • 6
  • Rosa Huguet
    • 7
  • Markus Bastir
    • 3
  • David Santamaría
    • 5
  • Marco Madella
    • 8
  • Julie Wilson
    • 9
  • Ángel Fernández Cortés
    • 10
  • Antonio Rosas
    • 3
  1. 1.ICREA at Universitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.BioArChUniversity of YorkYorkUK
  3. 3.Paleoanthropology Group, Department of PaleobiologyMuseo Nacional de Ciencias Naturales, CSICMadridSpain
  4. 4.Faculty of Agriculture and EnvironmentUniversity of SydneySydneyAustralia
  5. 5.Área de Prehistoria, Departamento de HistoriaUniversidad de OviedoOviedoSpain
  6. 6.Institute of Evolutionary BiologyCSIC-Universitat Pompeu FabraBarcelonaSpain
  7. 7.Institut Català de Paleoecologia Humana i Evolució Social (Unidad Asociada—CSIC) Universitat Rovira i VirgiliTarragonaSpain
  8. 8.ICREA at IMF-CSICBarcelonaSpain
  9. 9.YCCSAUniversity of YorkYorkUK
  10. 10.Departamento de GeologíaMuseo Nacional de Ciencias Naturales CSICMadridSpain

Personalised recommendations