, Volume 99, Issue 5, pp 407–416 | Cite as

New kind of polarotaxis governed by degree of polarization: attraction of tabanid flies to differently polarizing host animals and water surfaces

  • Ádám Egri
  • Miklós Blahó
  • András Sándor
  • György Kriska
  • Mónika Gyurkovszky
  • Róbert Farkas
  • Gábor Horváth
Original Paper


Aquatic insects find their habitat from a remote distance by means of horizontal polarization of light reflected from the water surface. This kind of positive polarotaxis is governed by the horizontal direction of polarization (E-vector). Tabanid flies also detect water by this kind of polarotaxis. The host choice of blood-sucking female tabanids is partly governed by the linear polarization of light reflected from the host’s coat. Since the coat-reflected light is not always horizontally polarized, host finding by female tabanids may be different from the established horizontal E-vector polarotaxis. To reveal the optical cue of the former polarotaxis, we performed choice experiments in the field with tabanid flies using aerial and ground-based visual targets with different degrees and directions of polarization. We observed a new kind of polarotaxis being governed by the degree of polarization rather than the E-vector direction of reflected light. We show here that female and male tabanids use polarotaxis governed by the horizontal E-vector to find water, while polarotaxis based on the degree of polarization serves host finding by female tabanids. As a practical by-product of our studies, we explain the enigmatic attractiveness of shiny black spheres used in canopy traps to catch tabanids.


Tabanid fly Polarization vision Polarotaxis Degree of polarization Direction of polarization Water detection Host choice Visual ecology 



This work was supported by a grant OTKA K-68462 from the Hungarian Science Foundation and grant TabaNOid 232366 (Trap for the Novel Control of Horse-flies on Open-air Fields) funded by the European Commission under the 7th Framework Programme received by G. Horváth and G. Kriska. Gábor Horváth thanks the German Alexander von Humboldt Foundation for an equipment donation. We also thank the valuable comments of three anonymous reviewers.

Supplementary material

114_2012_916_MOESM1_ESM.doc (63 kb)
ESM 1 (DOC 63 kb)
114_2012_916_MOESM2_ESM.doc (58 kb)
ESM 2 (DOC 58 kb)
114_2012_916_MOESM3_ESM.doc (85 kb)
ESM 3 (DOC 85 kb)
114_2012_916_MOESM4_ESM.doc (56 kb)
ESM 4 (DOC 56 kb)
114_2012_916_MOESM5_ESM.doc (54 kb)
ESM 5 (DOC 54 kb)
114_2012_916_MOESM6_ESM.doc (96 kb)
ESM 6 (DOC 96 kb)
114_2012_916_MOESM7_ESM.doc (61 kb)
ESM 7 (DOC 61 kb)
114_2012_916_MOESM8_ESM.doc (400 kb)
ESM 8 (DOC 399 kb)
114_2012_916_MOESM9_ESM.doc (658 kb)
ESM 9 (DOC 658 kb)
114_2012_916_MOESM10_ESM.doc (436 kb)
ESM 10 (DOC 436 kb)
114_2012_916_MOESM11_ESM.doc (337 kb)
ESM 11 (DOC 337 kb)
114_2012_916_MOESM12_ESM.doc (294 kb)
ESM 12 (DOC 293 kb)


  1. Catts EP (1970) A canopy trap for collecting Tabanidae. Mosq News 30:472–474Google Scholar
  2. Csabai Z, Boda P, Bernáth B, Kriska G, Horváth G (2006) A ‘polarisation sun-dial’ dictates the optimal time of day for dispersal by flying aquatic insects. Freshw Biol 51:1341–1350CrossRefGoogle Scholar
  3. Egri Á, Blahó M, Kriska G, Farkas R, Gyurkovszky M, Åkesson S, Horváth G (2012) Polarotactic tabanids find striped patterns with brightness and/or polarization modulation least attractive: an advantage of zebra stripes. J Exp Biol 215:736–745, + electronic supplementPubMedCrossRefGoogle Scholar
  4. Gressitt JCL, Gressitt MK (1962) An improved Malaise trap. Pac Insects 4:87–90Google Scholar
  5. Horváth G, Kriska G (2008) Polarization vision in aquatic insects and ecological traps for polarotactic insects. In: Lancaster J, Briers RA (eds) Aquatic insects: challenges to populations. CAB International, Wallingford, pp 204–229, Chapter 11CrossRefGoogle Scholar
  6. Horváth G, Varjú D (1997) Polarization pattern of freshwater habitats recorded by video polarimetry in red, green and blue spectral ranges and its relevance for water detection by aquatic insects. J Exp Biol 200:1155–1163Google Scholar
  7. Horváth G, Varjú D (2004) Polarized light in animal vision—polarization patterns in nature. Springer, Heidelberg, p 447Google Scholar
  8. Horváth G, Malik P, Kriska G, Wildermuth H (2007) Ecological traps for dragonflies in a cemetery: the attraction of Sympetrum species (Odonata: Libellulidae) by horizontally polarizing black gravestones. Freshw Biol 52:1700–1709CrossRefGoogle Scholar
  9. Horváth G, Majer J, Horváth L, Szivák I, Kriska G (2008) Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light. Naturwissenschaften 95:1093–1100PubMedCrossRefGoogle Scholar
  10. Horváth G, Blahó M, Egri Á, Kriska G, Seres I, Robertson B (2010a) Reducing the maladaptive attractiveness of solar panels to polarotactic insects. Conserv Biol 24:1644–1653, + electronic supplementPubMedCrossRefGoogle Scholar
  11. Horváth G, Blahó M, Kriska G, Hegedüs R, Gerics B, Farkas R, Åkesson S (2010b) An unexpected advantage of whiteness in horses: the most horsefly-proof horse has a depolarizing white coat. Proc R Soc B 277:1643–1650PubMedCrossRefGoogle Scholar
  12. Horváth G, Móra A, Bernáth B, Kriska G (2011) Polarotaxis in non-biting midges: female chironomids are attracted to horizontally polarized light. Physiol Behav 104:1010–1015, + cover picturePubMedCrossRefGoogle Scholar
  13. Hribar LJ, LePrince DJ, Foil LD (1992) Ammonia as an attractant for adult Hybomitra lasiophthalma (Diptera: Tabanidae). J Med Entomol 29:346–348PubMedGoogle Scholar
  14. Jékely G (2009) Evolution of phototaxis. Phil Trans R Soc B 364:2795–2808PubMedCrossRefGoogle Scholar
  15. Kriska G, Csabai Z, Boda P, Malik P, Horváth G (2006) Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection–polarization signals. Proc R Soc B 273:1667–1671PubMedCrossRefGoogle Scholar
  16. Kriska G, Bernáth B, Horváth G (2007) Positive polarotaxis in a mayfly that never leaves the water surface: polarotactic water detection in Palingenia longicauda (Ephemeroptera). Naturwissenschaften 94:148–154, + cover picturePubMedCrossRefGoogle Scholar
  17. Kriska G, Malik P, Szivák I, Horváth G (2008) Glass buildings on river banks as “polarized light traps” for mass-swarming polarotactic caddis flies. Naturwissenschaften 95:461–467PubMedCrossRefGoogle Scholar
  18. Kriska G, Bernáth B, Farkas R, Horváth G (2009) Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae). J Insect Physiol 55:1167–1173PubMedCrossRefGoogle Scholar
  19. Lehane MJ (2005) The biology of blood-sucking in insects, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Lerner A, Meltser N, Sapir N, Erlick C, Shashar N, Broza M (2008) Reflected polarization guides chironomid females to oviposition sites. J Exp Biol 211:3536–3543PubMedCrossRefGoogle Scholar
  21. Majer J (1987) Tabanids—Tabanidae. In: Fauna Hungariae. Akadémiai Kiadó, Budapest, 14(9): 1-57 (in Hungarian)Google Scholar
  22. Malaise R (1937) A new insect-trap. Entomologisk Tidskrift Stockholm 58:148–160Google Scholar
  23. Menzel R (1979) Spectral sensitivity and colour vision in invertebrates. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates, vol VII/6A. Springer, Berlin, pp 503–580CrossRefGoogle Scholar
  24. Mihok S (2002) The development of a multipurpose trap (the Nzi) for tsetse and other biting flies. Bull Entomol Res 92:385–403PubMedCrossRefGoogle Scholar
  25. Schwind R (1983) A polarization-sensitive response of the flying water bug Notonecta glauca to UV light. J Comp Physiol 150:87–91CrossRefGoogle Scholar
  26. Schwind R (1984) Evidence for true polarization vision based on a two-channel analyser system in the eye of the water bug, Notonecta glauca. J Comp Physiol A 154:53–57CrossRefGoogle Scholar
  27. Schwind R (1985a) A further proof of polarization vision of Notonecta glauca and a note on threshold intensity for eliciting the plunge reaction. Experientia 41:466–467CrossRefGoogle Scholar
  28. Schwind R (1985b) Sehen unter und über Wasser, Sehen von Wasser. Naturwissenschaften 72:343–352CrossRefGoogle Scholar
  29. Schwind R (1989) A variety of insects are attracted to water by reflected polarized light. Naturwissenschaften 76:377–378CrossRefGoogle Scholar
  30. Schwind R (1991) Polarization vision in water insects and insects living on a moist substrate. J Comp Physiol A 169:531–540CrossRefGoogle Scholar
  31. Schwind R (1995) Spectral regions in which aquatic insects see reflected polarized light. J Comp Physiol A 177:439–448CrossRefGoogle Scholar
  32. Schwind R (1999) Daphnia pulex swims towards the most strongly polarized light - a response that leads to ‘shore flight’. J Exp Biol 202:3631–3635PubMedGoogle Scholar
  33. Thorsteinson AJ, Bracken GK, Hanec W (1965) The orientation behaviour of horseflies and deerflies (Tabanidae: Diptera). III. The use of traps in the study of orientation of tabanids in the field. Entomol Exp Appl 8:189–192CrossRefGoogle Scholar
  34. von Kniepert FW (1979) Eine leistungsfähige Methode zum Fang Männlicher Bremsen (Diptera, Tabanidae). Z Angew Entomol 88:88–90CrossRefGoogle Scholar
  35. Wall WJ, Doane OW (1980) Large scale use of box traps to study and control saltmarsh greenhead flies (Diptera: Tabanidae) on Cape Cod, Massachusetts. Environ Entomol 9:371–375Google Scholar
  36. Wildermuth H (1998) Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: a behavioural field test. Naturwissenschaften 85:297–302CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ádám Egri
    • 1
  • Miklós Blahó
    • 1
  • András Sándor
    • 1
  • György Kriska
    • 2
    • 4
  • Mónika Gyurkovszky
    • 3
  • Róbert Farkas
    • 3
  • Gábor Horváth
    • 1
  1. 1.Environmental Optics Laboratory, Department of Biological Physics, Physical InstituteEötvös UniversityBudapestHungary
  2. 2.Group for Methodology in Biology TeachingBiological Institute, Eötvös UniversityBudapestHungary
  3. 3.Department of Parasitology and Zoology, Faculty of Veterinary ScienceSzent István UniversityBudapestHungary
  4. 4.Danube Research Institute, Centre for Ecological ResearchHungarian Academy of SciencesVácrátótHungary

Personalised recommendations