A life history continuum in the males of a Neotropical ant assemblage: refuting the sperm vessel hypothesis

Abstract

Animal lifespans range from a few days to many decades, and this life history diversity is especially pronounced in ants. Queens can live for decades. Males, in contrast, are often assumed to act as ephemeral sperm delivery vessels that die after a brief mating flight—a view developed from studies of lekking species in temperate habitats. In a tropical ant assemblage, we found that males can live days to months outside the nest, a trait hypothesized to be associated with female calling, another common mating system. We combined feeding experiments with respirometry to show that lifespan can be enhanced over 3 months by feeding outside the nest. In one focal female calling species, Ectatomma ruidum, feeding enhanced male lifespan, but not sperm content. Extended lifespans outside the nest suggest stronger than expected selection on premating traits of male ants, although the ways these traits shape male mating success remain poorly understood.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Baer B (2011) The copulation biology of ants (Hymenoptera: Formicidae). Myrm News 14:55–68

    Google Scholar 

  2. Baer B, Boomsma JJ (2004) Male reproductive investment and queen mating frequency in fungus-growing ants. Behav Ecol 15:426–432

    Article  Google Scholar 

  3. Baer B, Boomsma JJ (2006) Mating biology of leaf-cutting ants Atta colombica and A. cephalotes. J Morphol 267:1165–1171

    PubMed  Article  Google Scholar 

  4. Boomsma JJ (2009) Lifetime monogamy and the evolution of eusociality. Phil Trans R Soc B 364:3191–3207

    PubMed  Article  Google Scholar 

  5. Boomsma JJ, Ratnieks FLW (1996) Paternity in eusocial Hymenoptera. Phil Trans R Soc B 351:947–975

    Article  Google Scholar 

  6. Boomsma JJ, Baer B, Heinze J (2005) The evolution of male traits in social insects. Annu Rev Entomol 50:395–420

    PubMed  Article  CAS  Google Scholar 

  7. Breed MD, Abel P, Bleuze TJ, Denton SE (1990) Thievery, home ranges, and nestmate recognition in Ectatomma ruidum. Oecologia 84:117–121

    Article  Google Scholar 

  8. Brown WL (1968) An hypothesis concerning the function of metapleural glands in ants. Am Nat 102:188–191

    Article  Google Scholar 

  9. Chown SL, Marais E, Terblanche JS, Klok C, Lighton JRB, Blackburn TM (2007) Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Funct Ecol 21:282–290

    Article  Google Scholar 

  10. den Boer SPA, Baer B, Boomsma JJ (2010) Seminal fluid mediates ejaculate competition in social insects. Science 327:1506–1509

    Article  Google Scholar 

  11. Dunn RR, Parker CR, Geraghty M, Sanders NJ (2007) Reproductive phenologies in a diverse temperate ant fauna. Ecol Ent 32:135–142

    Article  Google Scholar 

  12. Finch CE (1990) Longevity, senescence, and the genome. The University of Chicago Press, Chicago

    Google Scholar 

  13. Heinze J, Hölldobler B (1993) Fighting for a harem of queens: physiology of reproduction in Cardiocondyla male ants. Proc Nat Acad Sci USA 90:8412–8414

    PubMed  Article  CAS  Google Scholar 

  14. Hölldobler B, Bartz SH (1985) Sociobiology of reproduction in ants. In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Sinauer Associates, Sunderland, pp 237–257

    Google Scholar 

  15. Hölldobler B, Haskins CP (1977) Sexual calling behavior in primitive ants. Science 195:793–794

    PubMed  Article  Google Scholar 

  16. Hung ACF, Vinson SB (1975) Notes on the male reproductive system in ants (Hymenoptera, Formicidae). J NY Entomol Soc 83:192–197

    Google Scholar 

  17. Jemielity S, Kimura M, Parker KM, Parker JD, Cao X, Aviv A, Keller L (2007) Short telomeres in short-lived males: what are the molecular and evolutionary causes? Aging Cell 6:225–233

    PubMed  Article  CAS  Google Scholar 

  18. Jutsum AR, Quinlan RJ (1978) Flight and substrate utilization in laboratory-reared males of Atta sexdens. J Ins Phys 24:821–825

    Article  CAS  Google Scholar 

  19. Kammer AE, Heinrich B (1978) Insect flight metabolism. Adv Ins Physiol 13:133–228

    Article  CAS  Google Scholar 

  20. Kaspari M, Vargo E (1995) Colony size as a buffer against seasonality: Bergmann’s rule in social insects. Am Nat 145:610–632

    Article  Google Scholar 

  21. Kaspari M, Pickering J, Longino JT, Windsor D (2001a) The phenology of a Neotropical ant assemblage: evidence for continuous and overlapping reproduction. Behav Ecol Sociobiol 50:382–390

    Article  Google Scholar 

  22. Kaspari M, Pickering J, Windsor D (2001b) The reproductive flight phenology of a Neotropical ant assemblage. Ecol Ent 26:245–257

    Article  Google Scholar 

  23. Kay AD, Shik JZ, Van Alst A, Kaspari M (2011) Diet composition does not affect ant colony tempo. Funct Ecol (in press)

  24. Keller L, Genoud M (1997) Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389:255–263

    Article  Google Scholar 

  25. Keller L, Passera L (1992) Mating system, optimal number of matings, and sperm transfer in the Argentine ant, Iridomyrmex humilis. Behav Ecol Sociobiol 31:359–366

    Article  Google Scholar 

  26. Lighton JRB (2008) Measuring metabolic rates: a manual for scientists. Oxford University Press, Oxford

    Google Scholar 

  27. Lindstedt SL, Boyce MS (1985) Seasonality, fasting endurance, and body size in mammals. Am Nat 125:873–878

    Article  Google Scholar 

  28. Mikheyev AS (2003) Evidence for mating plugs in the fire ant Solenopsis invicta. Ins Soc 50:401–402

    Article  Google Scholar 

  29. Mikheyev AS (2004) Male accessory gland size and the evolutionary transition from single to multiple mating in the fungus-gardening ants. J Ins Sci 4:37

    Google Scholar 

  30. Moreau CS, Bell CD, Vila R, Archibald B, Pierce NE (2006) Phylogeny of the ants: diversification in the age of angiosperms. Science 312:101–104

    PubMed  Article  CAS  Google Scholar 

  31. Paradis E, Claude J, Strimmer K (2004) APE: Analysis of Phylogenetics and Evolution in R language. Bioinformat 20:289–290

    Article  CAS  Google Scholar 

  32. Passera L, Keller L (1992) The period of sexual maturation and the age at mating in Iridomyrmex humilis an ant with intranidal mating. J Zool (London) 228:141–153

    Article  Google Scholar 

  33. Passera L, Keller L, Grimal A, Chautems D, Cherix D, Fletcher DJC, Fortelius W, Rosengren R, Vargo EL (1990) Carbohydrates as energy source during the flight of sexuals of the ant Formica lugubris (Hymenoptera: Formicidae). Ent General 15:25–32

    Google Scholar 

  34. Peakin G (1964) Food reserves in the reproductive castes of Lasius flavus Fab. (Hymenoptera). Proceedings of the XIIth International Congress of Entomology, London, p 3030

  35. Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge

    Google Scholar 

  36. Robertson HG (1995) Sperm transfer in the ant Carebara vidua F. Smith (Hymenoptera: Formicidae). Ins Soc 42:411–418

    Article  Google Scholar 

  37. Shik JZ, Kaspari M (2009) Lifespan in male ants linked to mating syndrome. Ins Soc 56:131–134

    Article  Google Scholar 

  38. Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  39. Stürup M, den Boer SPA, Nash DR, Boomsma JJ, Baer B (2011) Variation in male body size and reproductive allocation in the leafcutter ant Atta colombica: estimating variance components and possible tradeoffs. Ins Soc 58:47–55

    Article  Google Scholar 

  40. Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man, 1871–1971. Aldine, Chicago, pp 136–179

    Google Scholar 

  41. Vogt JT, Appel AG, West MS (2000) Flight energetics and dispersal capability of the fire ant, Solenopsis invicta Buren. J Ins Physiol 46:697–707

    Article  CAS  Google Scholar 

  42. Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291

    PubMed  Article  Google Scholar 

  43. Weber NA (1972) Gardening in the ants: the attines. American Philosophical Society, Philadelphia

    Google Scholar 

  44. Wheeler DE, Krutzsch PH (1992) Internal reproductive system in adult males of the genus Camponotus (Hymenoptera: Formicidae: Formicinae). J Morphol 211:307–317

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the National Science Foundation under the grant DEB-0842038 to A. Kay and M. Kaspari. DF was supported by an NSF REU on the same grant. JZS thanks WR Tschinkel for the instruction on the finer points of male ant dissection and SPA den Boer for instruction in the DAPI sperm staining method. JJ Boomsma and three anonymous reviewers provided many excellent suggestions for improving this manuscript. DD Donoso helped verify the identification of males.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonathan Z. Shik.

Additional information

Communicated by: Sven Thatje

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Table S1

Raw metabolic data for male ants with bibliography for data from the literature (DOCX 107 kb)

Appendix S1

Methodological details for respirometry and sperm counts (DOCX 166 kb)

Fig. S1

Phylogenetic analyses of scaling of metabolic rate (μW) with male mass (mg). Phylogenetic tree used to calculate contrasts and figure and plot used to calculate statistics (PDF 338 kb)

Fig. S2

Phylogenetic analysis of the scaling of mean and maximum longevity (days) when provided sucrose solution with body mass (mg). Phylogenetic tree used to calculate contrasts and figure and plot used to calculate statistics (PDF 247 kb)

Fig. S3

Comparison of pre- and post-flight testes for males of Ectatomma ruidum (PDF 7426 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shik, J.Z., Flatt, D., Kay, A. et al. A life history continuum in the males of a Neotropical ant assemblage: refuting the sperm vessel hypothesis. Naturwissenschaften 99, 191–197 (2012). https://doi.org/10.1007/s00114-012-0884-6

Download citation

Keywords

  • Lifespan
  • Mating system
  • Tropical rainforest
  • Metabolic scaling