, Volume 99, Issue 1, pp 23–31 | Cite as

Changes in reproductive life-history strategies in response to nest density in a shell-brooding cichlid, Telmatochromis vittatus

  • Kazutaka Ota
  • Michio Hori
  • Masanori Kohda
Original Paper


To determine whether the appearance of a reproductively parasitic tactic varies, and how this variation affects territorial males of the Lake Tanganyika cichlid fish Telmatochromis vittatus, we examined the reproductive ecology of territorial males in Mtondwe and compared it with that of a neighboring Wonzye population, where nest density differs from that at Mtondwe. In Wonzye, with high nest density, male tactics change with their body size from a territorial to a non-territorial parasitic tactic called piracy in which they conquer several nests defended by territorial males and take over the nests while females are spawning. These “pirate” males could decrease the costs incurred by travelling among nests by exclusively targeting aggregations of nests in close proximity while avoiding separate nests. Territorial males in Wonzye sacrifice the potential higher attractiveness offered by large nests and instead compete for nests farther from neighbors on which pirates less frequently intrude. In contrast, the Mtondwe population had lower nest density and piracy was absent. Given that the success of piracy depends on the close proximity of nests, nest density is likely responsible for the observed variation in the occurrence of piracy between the two populations. Furthermore, in Mtondwe, territorial males competed for larger nests and were smaller than the territorial males in Wonzye. Thus, this lower nest density may free territorial males from the selection pressures for increased size caused by both defense against nest piracy and the need to develop into pirates as they grow.


Alternative reproductive tactics Interpopulation comparison Nest choice Nest piracy Sperm competition Body size 



We thank the staff of the Lake Tanganyika Research Unit at the Fisheries Research Institute of Zambia for their support during field work. We are very grateful to Kaya Matsuoka and Anny Mogollon for English correction and anonymous reviewers for their helpful comments on an earlier version of this manuscript. This work was supported partly by Overseas Scientific Research grant (Ministry of Education, Culture, Sports, Science and Technology; MEXT) to M.K. and Global COE project A06 (MEXT). The present study was conducted with permission from the Zambian Ministry of Agriculture, Food and Fisheries for fish research in Lake Tanganyika.


  1. Arnold SJ, Wade MJ (1984) On the measurement of natural and sexual selection: theory. Evolution 38:709–719CrossRefGoogle Scholar
  2. Awata S, Takeyama T, Makino Y, Kitamura Y, Kohda M (2008) Cooperatively breeding cichlid fish adjust their testis size but not sperm traits in relation to sperm competition risk. Behav Ecol Sociobiol 62:1701–1710. doi: 10.1007/s00265-008-0598-0 CrossRefGoogle Scholar
  3. Balshine S, Leach B, Neat F, Reid H, Taborsky M, Werner N (2001) Correlates of group size in a cooperatively breeding cichlid fish (Neolamprologus pulcher). Behav Ecol Sociobiol 50:134–140. doi: 10.1007/s002650100343 CrossRefGoogle Scholar
  4. Bessert ML, Brozek J, Orti G (2007) Impact of nest substrate limitations on patterns of illegitimacy in the fathead minnow, Pimephales promelas (Cypriniformes. Cyprinidae). J Hered 98:716–722. doi: 10.1093/jhered/esm092 PubMedCrossRefGoogle Scholar
  5. Calsbeek R, Alonzo SH, Zamudio K, Sinervo B (2002) Sexual selection and alternative mating behaviours generate demographic stochasticity in small populations. Proc Roy Soc Lond B 269:157–164. doi: 10.1098/rspb.2001.1856 CrossRefGoogle Scholar
  6. Corl A, Davis AR, Kuchta SR, Sinervo B (2010a) Selective loss of polymorphic mating types is associated with rapid phenotypic evolution during morphic speciation. Proc Natl Acad Sci 107:4254–4259. doi: 10.1073/pnas.0909480107 PubMedCrossRefGoogle Scholar
  7. Corl A, Davis AR, Kuchta SR, Comendant T, Sinervo B (2010b) Alternative mating strategies and the evolution of sexual size dimorphism in the side-blotched lizard, Uta stansburiana: a population level comparative analysis. Evolution 64:79–96. doi: 10.1111/j.1558-5646.2009.00791.x PubMedCrossRefGoogle Scholar
  8. Downhower JF, Brown L (1980) Mate preferences of female mottled sculpins, Cottus bairdi. Anim Behav 28:728–734. doi: 10.1016/S0003-3472(80)80132-1 CrossRefGoogle Scholar
  9. Duftner N, Sefc KM, Koblmüller S, Nevado B, Verheyen E, Phiri H, Sturmbauer C (2006) Distinct population structure in a phenotypically homogeneous rock-dwelling cichlid fish from Lake Tanganyika. Mol Ecol 15:2381–2395. doi: 10.1111/j.1365-294X.2006.02949.x PubMedCrossRefGoogle Scholar
  10. Endler JA (1995) Multiple-trait coevolution and environmental gradients in guppies. Trend Ecol Evol 10:22–29. doi: 10.1016/S0169-5347(00)88956-9 CrossRefGoogle Scholar
  11. Fairbairn DJ (2005) Allometry for sexual size dimorphism: testing two hypotheses for Rensch’s rule in the water strider Aquarius remigis. Am Nat (Suppl) 11:69–84. doi: 0003-0147/2005/1660S4-40916 Google Scholar
  12. Fitze PS, Le Galliard JF (2011) Inconsistency between different measures of sexual selection. Am Nat 178:256–268. doi: 10.1086/660826 PubMedCrossRefGoogle Scholar
  13. Fitzpatrick JL, Desjardins JK, Milligan N, Montgomerie R, Balshine S (2007) Reproductive-tactic-specific variation in sperm swimming speeds in a shell-brooding cichlid. Biol Rep 77:280–284. doi: 10.1095/biolreprod.106.059550 CrossRefGoogle Scholar
  14. Gamble S, Lindholm AK, Endler JA, Brooks R (2003) Environmental variation and the maintenance of polymorphism: the effect of ambient light spectrum on mating behaviour and sexual selection in guppies. Ecol Lett 6:463–472. doi: 10.1046/j.1461-0248.2003.00449.x CrossRefGoogle Scholar
  15. Gross MR (1996) Alternative reproductive strategies and tactics: diversity within sexes. Trend Ecol Evol 11:92–98. doi: 10.1016/0169-5347(96)81050-0 CrossRefGoogle Scholar
  16. Jones AG, Walker D, Kvarnemo C, Lindstrom K, Avise JC (2001) How cuckoldry can decrease the opportunity for sexual selection: data and theory from a genetic parentage analysis of the sand goby, Pomatoschistus minutes. Proc Natl Acad Sci 98:9151–9156. doi: 10.1073/pnas.171310198 PubMedCrossRefGoogle Scholar
  17. Klug H, Heuschele J, Jennions MD, Kokko H (2010) The mismeasurement of sexual selection. J Evol Biol 23:447–462. doi: 10.1111/j.1420-9101.2009.01921.x PubMedCrossRefGoogle Scholar
  18. Koblmüller S, Sefc KM, Duftner N, Warum M, Sturmbauer C (2007) Genetic population structure as indirect measure of dispersal ability in a Lake Tanganyika cichlid. Genetica 130:121–131. doi: 10.1007/s10709-006-0027-0 PubMedCrossRefGoogle Scholar
  19. Kokko H, Rankin DJ (2006) Lonely hearts or sex in the city? Density-dependent effects in mating systems. Phil Trans Roy Soc B 361:319–334. doi: 10.1098/rstb.2005.1784 CrossRefGoogle Scholar
  20. Kvarnemo S, Ahnesjö I (1996) The dynamics of operational sex ratios and competition for mates. Trend Ecol Evol 11:404–408. doi: 10.1016/0169-5347(96)10056-2 CrossRefGoogle Scholar
  21. Lank DB, Smith CM, Hanotte O, Burke T, Cooke F (1995) Genetic polymorphism for alternative mating behavior in lekking male ruff Philomachus pugnax. Nature 378:59–62. doi: 10.1038/378059a0 CrossRefGoogle Scholar
  22. Larison B (2007) Environmental heterogeneity and alternative mating tactics in the damselfly Protoneura amatoria. Behav Ecol 18:1021–1028. doi: 10.1093/beheco/arm071 CrossRefGoogle Scholar
  23. Lindström K (1988) Male–male competition for nest sites in the sand goby, Pomatoschistus minutus. Oikos 53:67–73CrossRefGoogle Scholar
  24. Lugli M, Bobbio L, Torricelli P, Gandolfi G (1992) Breeding ecology and male spawning success in two hill-stream populations of the freshwater goby, Padogobius martensi. Environ Biol Fish 35:37–48. doi: 10.1007/BF00001156 CrossRefGoogle Scholar
  25. Lukasik P, Radwan J, Tomkins JL (2006) Structural complexity of the environment affects the survival of alternative male reproductive tactics. Evolution 60:399–403. doi: 10.1111/j.0014-3820.2006.tb01116.x PubMedGoogle Scholar
  26. McNamara JM, Houston AI (1996) State-dependent life histories. Nature 380:215–221. doi: 10.1038/380215a0 PubMedCrossRefGoogle Scholar
  27. Mills S, Reynolds JD (2003) Operational sex ratio and alternative reproductive behaviours in the European bitterling, Rhodeus sericeus. Behav Ecol Sociobiol 54:98–104. doi: 10.1007/s00265-003-0616-1 Google Scholar
  28. Nakaya K, Yanagisawa Y, Kohda M, Sato T, Niimura Y, Matsumoto K (1992) Ichthyofaunal comparison in the Zambian waters of Lake Tanganyika. Ecol Limnol Stud Lake Tanganyika Adjacent Reg 8:47–49Google Scholar
  29. Nevado B, Koblmüller S, Sturmbauer C, Snoeks J, Usano-Alemany J, Verheyen E (2009) Complete mitochondrial DNA replacement in a Lake Tanganyika cichlid fish. Mol Ecol 18:4240–4255. doi: 10.1111/j.1365-294X.2009.04348.x PubMedCrossRefGoogle Scholar
  30. Oliveira RF, Taborsky M, Brockmann HJ (2008) Alternative reproductive tactics: an integrative approach. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. Ota K (2007) Reproductive tactics and sperm competition in a shell-brooding fish, Telmatochromis vittatus (Cichlidae), in Lake Tanganyika. Dissertation, Osaka City UniversityGoogle Scholar
  32. Ota K, Kohda M (2006a) Description of alternative male reproductive tactics in a shell-brooding cichlid, Telmatochromis vittatus, in Lake Tanganyika. J Ethol 24:9–15. doi: 10.1007/s10164-005-0154-6 CrossRefGoogle Scholar
  33. Ota K, Kohda M (2006b) Nest use by territorial males in a shell-brooding cichlid. The effect of reproductive parasitism. J Ethol 24:91–95. doi: 10.1007/s10164-005-0167-1 CrossRefGoogle Scholar
  34. Ota K, Kohda M (2011) Social status-dependent nest choice of territorial males under reproductive parasitism in a Lake Tanganyika cichlid Telmatochromis vittatus. J Fish Biol 78:700–712. doi: 10.1111/j.1095-8649.2010.02872.x PubMedCrossRefGoogle Scholar
  35. Ota K, Heg D, Hori M, Kohda M (2010a) Sperm phenotypic plasticity in a cichlid: a territorial male’s counterstrategy to spawning takeover. Behav Ecol 21:1293–1300. doi: 10.1093/beheco/arq146 CrossRefGoogle Scholar
  36. Ota K, Kohda M, Sato T (2010b) Unusual allometry for sexual size dimorphism in a cichlid where males are extremely larger than females. J Biosci 35:257–265. doi: 10.1007/s12038-010-0030-6 PubMedCrossRefGoogle Scholar
  37. Parker GA (1990) Sperm competition games: sneaks and extra-pair copulations. Proc Roy Soc B 242:127–133. doi: 10.1098/rspb.1990.0115 CrossRefGoogle Scholar
  38. Reichard M, Smith C, Jordan WC (2004) Genetic evidence reveals density-dependent mediated success of alternative mating Behaviours in the European bitterling (Rhodeus sericeus). Mol Ecol 13:1569–1578. doi: 10.1111/j.1365-294X.2004.02151.x PubMedCrossRefGoogle Scholar
  39. Sato T, Gashagaza MM (1997) Shell-brooding cichlid fishes of Lake Tanganyika: their habitats and mating systems. In: Kawanabe H, Hori M, Nagoshi M (eds) Fish communities in Lake Tanganyika. Kyoto University Press, Kyoto, pp 219–238Google Scholar
  40. Shuster SM, Wade MJ (1991) Equal mating success among male reproductive strategies in a marine isopod. Nature 350:608–610. doi: 10.1038/350608a0 CrossRefGoogle Scholar
  41. Simmons LW, Tomkins JL, Hunt J (1999) Sperm competition games played by dimorphic male beetles. Proc Roy Soc Lond B 266:145–150. doi: 10.1098/rspb.1999.0614 CrossRefGoogle Scholar
  42. Sinervo B, Lively CM (1996) The rock-paper-scissors game and the evolution of alternative male strategies. Nature 380:240–243. doi: 10.1038/380240a0 CrossRefGoogle Scholar
  43. Singer A, Kvarnemo C, Lindstrom K, Svensson O (2006) Genetic mating patterns studied in pools with manipulated nest site availability in two populations of Pomatoschistus minutes. J Evol Biol 19:1641–1650. doi: 10.1111/j.1420-9101.2006.01114.x PubMedCrossRefGoogle Scholar
  44. Taborsky M (1994) Sneakers, satellites, and helpers: parasitic and cooperative behavior in fish reproduction. Adv Stud Behav 23:1–100. doi: 10.1016/S0065-3454(08)60351-4 CrossRefGoogle Scholar
  45. Taborsky M (2001) The evolution of bourgeois, parasitic, and cooperative reproductive behaviors in fishes. J Heredity 92:100–110. doi: 10.1093/jhered/92.2.100 CrossRefGoogle Scholar
  46. Takahashi T (2004) Morphological and genetic distinctness of rock and shell-bed dwelling Telmatochromis (Teleostei, Cichlidae) in the south of Lake Tanganyika suggest the existence of two species. J Fish Biol 65:419–435. doi: 10.1111/j.0022-1112.2004.00459.x CrossRefGoogle Scholar
  47. Takahashi T, Watanabe K, Munehara H, Rüber L, Hori M (2009) Evidence for divergent natural selection of a Lake Tanganyika cichlid inferred from repeated radiations in body size. Mol Ecol 18:3110–3119. doi: 10.1111/j.1365-294X.2009.04248.x PubMedCrossRefGoogle Scholar
  48. Tomkins JL, Brown GS (2004) Population density drives the local evolution of a threshold dimorphism. Nature 431:1099–1103. doi: 10.1038/nature02918 PubMedCrossRefGoogle Scholar
  49. Tomkins JL, Simmons LW (2002) Measuring relative investment: a case study of testes investment in species with alternative male reproductive tactics. Anim Behav 63:1009–1016. doi: 10.1006/anbe.2001.1994 CrossRefGoogle Scholar
  50. Tomkins JL, Hazel WN, Penrose MA, Radwan JW, LeBas NR (2011) Habitat complexity drives experimental evolution of a conditionally expressed secondary sexual trait. Curr Biol 2:569–573. doi: 10.1016/j.cub.2011.02.032 CrossRefGoogle Scholar
  51. van den Berghe E (1988) Piracy as an alternative reproductive tactic for males. Nature 334:697–698. doi: 10.1038/334697a0 CrossRefGoogle Scholar
  52. Warner RR, Hoffman SG (1980) Population density and the economics of territorial defense in a coral reef fish. Ecology 61:772–780. doi: 10.2307/1936747 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Sciences, Faculty of BiologyKyoto UniversityKyotoJapan
  2. 2.Department of Biology and GeosciencesOsaka City UniversityOsakaJapan

Personalised recommendations