Advertisement

Naturwissenschaften

, Volume 98, Issue 12, pp 995–1008 | Cite as

Small bite, large impact–saliva and salivary molecules in the medicinal leech, Hirudo medicinalis

  • Jan-Peter Hildebrandt
  • Sarah Lemke
Review

Abstract

Blood-sucking leeches have been used for medical purposes in humans for hundreds of years. Accordingly, one of the most prominent species has been named Hirudo medicinalis by Carl Linne in 1758. Feeding on vertebrate blood poses some serious problems to blood-sucking ectoparasites, as they have to penetrate the body surface of the host and to suppress the normal reactions of the host to such injuries (swelling, pain, inflammation) to remain undetected during the feeding period. Furthermore, the parasites have to take measures to inhibit the normal reactions in host tissues to blood vessel damage, namely hemostasis and blood coagulation (platelet aggregation and activation, activation of thrombin and formation of fibrin clots). During evolution, leeches have acquired the ability to control these processes in their hosts by transferring various bioactive substances to the host. These substances are supposedly produced in unicellular salivary gland cells and injected into the wound at the feeding site through tiny salivary ductule openings in the jaws that the leech uses to slice open the host body surface and to cut blood vessels in the depth of the wound. This review summarizes current knowledge about the salivary gland cells and the biological effects of individual saliva components as well as hints to the potential usefulness of some of these compounds for medical purposes.

Keywords

Hirudo spp. Salivary gland cells Saliva Blood feeding Salivary proteins Medical applications 

Notes

Acknowledgements

Due to limitations in space, the authors were not able to cite every single piece of work of other researchers in the field and have focussed on the most influential publications. We apologize for every important contribution that we may have overlooked. The authors would like to thank Gabriele Uhl and Christine Putzar for their cooperation in the histological project and Steffen Harzsch and Verena Rieger for their help with the histamine immune fluorescence. Thanks to Detlef Menzel (BioRepro GmbH, Potsdam) for providing the animals. We are thankful to the four reviewers for their constructive and helpful comments. Sarah Lemke is the recipient of a doctoral stipend from the Konrad Adenauer-Stiftung, Germany.

Ethical standards

We declare that the experiments described in this paper comply with the current laws in Germany.

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

Online Resource 1

Hirudo verbana attaches itself to a piece of porcine intestine (wetted using PBS containing 0.75 mol/l arginine) and slices the tissue using its toothed jaws. (MPG 12184 kb)

114_2011_859_MOESM2_ESM.pdf (14 kb)
Online Resource 2 Methodological details for the preparation of histological sections (5 μm thickness) of the paraffin-embedded anterior part (< segment 10) of a leech (Hirudo verbana) and for Azan staining of tissue sections. (PDF 13 kb)
114_2011_859_MOESM3_ESM.pdf (13 kb)
Online Resource 3 Methodological details of histamine detection in the elongated portions of salivary gland cells by immune fluorescence in longitudinal cryosections (5 μm thickness) of the anterior segments (<10) of Hirudo verbana. (PDF 12 kb)

References

  1. Adams GL, Manson RJ, Turner I, Sindram D, Lawson JH (2007) The balance of thrombosis and hemorrhage in surgery. Hematol Oncol Clin North Am 21:13–24PubMedCrossRefGoogle Scholar
  2. Ascenzi P, Aducci P, Amiconi G, Ballio A, Guaragna A, Menegatti E, Schnebli HP, Bolognesi M (1991) Binding of the recombinant proteinase inhibitor eglin c from leech Hirudo medicinalis to serine (pro)enzymes: a comparative thermodynamic study. J Mol Recognit 4:113–119PubMedCrossRefGoogle Scholar
  3. Ascenzi P, Amiconi G, Bode W, Bolognesi M, Coletta M, Menegatti E (1995) Proteinase inhibitors from the European medicinal leech Hirudo medicinalis: structural, functional and biomedical aspects. Mol Aspects Med 16:215–313PubMedCrossRefGoogle Scholar
  4. Ascenzi P, Amiconi G, Coletta M, Lupidi G, Menegatti E, Onesti S, Bolognesi M (1992) Binding of hirudin to human alpha, beta and gamma-thrombin. A comparative kinetic and thermodynamic study. J Mol Biol 225:177–184PubMedCrossRefGoogle Scholar
  5. Bajzar L, Manuel R, Nesheim ME (1995) Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J Biol Chem 270:14477–14484PubMedCrossRefGoogle Scholar
  6. Barnes CS, Krafft B, Frech M, Hofmann UR, Papendieck A, Dahlems U, Gellissen G, Hoylaerts MF (2001) Production and characterization of saratin, an inhibitor of von Willebrand factor-dependent platelet adhesion to collagen. Semin Thromb Hemost 27:337–348PubMedCrossRefGoogle Scholar
  7. Baskova IP, Ferner Z, Balkina AS, Kozin S, Kharitonova OV, Zavalova LL, Zgoda VG (2008a) Steroids, histamine and serotonin in medicinal leech salivary gland secretions. Biomed Khim 54:127–139PubMedGoogle Scholar
  8. Baskova IP, Kostrjukova ES, Vlasova MA, Kharitonova OV, Levitskiy SA, Zavalova LL, Moshkovskii SA, Lazarev VN (2008b) Proteins and peptides of the salivary gland secretion of medicinal leeches Hirudo verbana, H. medicinalis, and H. orientalis. Biochemistry (Mosc) 73:315–320CrossRefGoogle Scholar
  9. Baskova IP, Nikonov GI (1991) Destabilase, the novel epsilon-(gamma-Glu)-Lys isopeptidase with thrombolytic activity. Blood Coagul Fibrinolysis 2:167–172PubMedCrossRefGoogle Scholar
  10. Baskova IP, Zavalova LL (2001) Proteinase inhibitors from the medicinal leech Hirudo medicinalis. Biochemistry (Mosc) 66:703–714CrossRefGoogle Scholar
  11. Baskova I, Zavalova L (2008) Polyfunctionality of lysozyme destabilase from the medicinal leech. Russ J Bioorg Chem 34:304–309CrossRefGoogle Scholar
  12. Baskova IP, Zavalova LL, Basanova AV, Moshkovskii SA, Zgoda VG (2004) Protein profiling of the medicinal leech salivary gland secretion by proteomic analytical methods. Biochemistry (Mosc) 69:770–775CrossRefGoogle Scholar
  13. Baskova IP, Zavalova LL, Basanova AV, Sass AV (2001) Separation of monomerizing and lysozyme activities of destabilase from medicinal leech salivary gland secretion. Biochemistry (Mosc) 66:1368–1373CrossRefGoogle Scholar
  14. Berg T, Carretero OA, Scicli AG, Tilley B, Stewart JM (1989) Role of kinin in regulation of rat submandibular gland blood flow. Hypertension 14:73–80PubMedGoogle Scholar
  15. Bergmann C, Dodt J, Kohler S, Fink E, Gassen HG (1986) Chemical synthesis and expression of a gene coding for hirudin, the thrombin-specific inhibitor from the leech Hirudo medicinalis. Biol Chem Hoppe Seyler 367:731–740PubMedCrossRefGoogle Scholar
  16. Bodong A (1905) Über Hirudin. Arch Exp Pathol Pharmacol 52:242–261CrossRefGoogle Scholar
  17. Boffa MB, Reid TS, Joo E, Nesheim ME, Koschinsky ML (1999) Characterization of the gene encoding human TAFI (thrombin-activable fibrinolysis inhibitor; plasma procarboxypeptidase B). Biochemistry 38:6547–6558PubMedCrossRefGoogle Scholar
  18. Braun NJ, Schnebli HP (1987) Interaction of eglin c with polymorphonuclear cells: evidence for binding to the cell surface. Biol Chem Hoppe Seyler 368:155–161PubMedCrossRefGoogle Scholar
  19. Braun NJ, Bodmer JL, Virca GD, Metz-Virca G, Maschler R, Bieth JG, Schnebli HP (1987) Kinetic studies on the interaction of eglin c with human leukocyte elastase and cathepsin G. Biol Chem Hoppe Seyler 368:299–308PubMedCrossRefGoogle Scholar
  20. Chalisova NI, Pennijajnen VP, Baskova IP, Zavalova LL, Bazanova AV (2003) The neurite-stimulating activity of components of the salivary gland secretion of the medicinal leech in cultures of sensory neurons. Neurosci Behav Physiol 33:411–414PubMedCrossRefGoogle Scholar
  21. Cicardi M, Zingale L, Zanichelli A, Pappalardo E, Cicardi B (2005) C1 inhibitor: molecular and clinical aspects. Springer Sem Immunopathol 27:286–298CrossRefGoogle Scholar
  22. Cruz CP, Eidt J, Drouilhet J, Brown AT, Wang Y, Barnes CS, Moursi MM (2001) Saratin, an inhibitor of von Willebrand factor-dependent platelet adhesion, decreases platelet aggregation and intimal hyperplasia in a rat carotid endarterectomy model. J Vasc Surg 34:724–729PubMedCrossRefGoogle Scholar
  23. Damas D (1972) Durcissement de la cuticule des machoires chez Hirudo medicinalis (Annelide, Hirudinee). Aboutissant aux structures dentaires etude histochemique et ultrastructurale. Arch Zool Exp Gen 113:401–421Google Scholar
  24. Damas D (1974) Etude histologique et histochemique des glandes salivaires de la sangsue medicinale, Hirudo medicinalis (Hirudinee, Gnathobdelle). Arch Zool Exp Gen 115:279–292Google Scholar
  25. Deckmyn H, Stassen JM, Vreys I, Van Houtte E, Sawyer RT, Vermylen J (1995) Calin from Hirudo medicinalis, an inhibitor of platelet adhesion to collagen, prevents platelet-rich thrombosis in hamsters. Blood 85:712–719PubMedGoogle Scholar
  26. Domogalla B (2005) NMR-Lösungsstruktur des Proteins Saratin, strukturelle Charakterisierung der Saratin-Kollagen-Interaktion und des Carausius morosus-hyperthrehalosämischen Hormons (Cam-HrTH-I). Dissertation, University of RegensburgGoogle Scholar
  27. Electricwala A, Hartwell R, Scawen MD, Atkinson T (1993) The complete amino acid sequence of a hirudin variant from the leech Hirudinaria manillensis. J Protein Chem 12:365–370PubMedCrossRefGoogle Scholar
  28. Elliott EJ (1986) Chemosensory stimuli in feeding behavior of the leech Hirudo medicinalis. J Comp Physiol A 159:391–401PubMedCrossRefGoogle Scholar
  29. Elliott JM (2008) Population size, weight distribution and food in a persistent population of the rare medicinal leech, Hirudo medicinalis. Freshwater Biology 53:1502–1512CrossRefGoogle Scholar
  30. Fenton JW (1986) Thrombin. Ann N Y Acad Sci 485:5–15PubMedCrossRefGoogle Scholar
  31. Fink E, Rehm H, Gippner C, Bode W, Eulitz M, Machleidt W, Fritz H (1986) The primary structure of bdellin B-3 from the leech Hirudo medicinalis. Bdellin B-3 is a compact proteinase inhibitor of a “non-classical” Kazal type. It is present in the leech in a high molecular mass form. Biol Chem Hoppe Seyler 367:1235–1242PubMedCrossRefGoogle Scholar
  32. Fradkov A, Berezhnoy S, Barsova E, Zavalova L, Lukyanov S, Baskova I, Sverdlov ED (1996) Enzyme from the medicinal leech (Hirudo medicinalis) that specifically splits endo-[epsilon](-[gamma]-Glu)-Lys isopeptide bonds: cDNA cloning and protein primary structure. FEBS Lett 390:145–148PubMedCrossRefGoogle Scholar
  33. Fraser JR, Laurent TC, Laurent UB (1997) Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 242:27–33PubMedCrossRefGoogle Scholar
  34. Furie B, Furie BC (2008) Mechanisms of thrombus formation. N Engl J Med 359:938–949PubMedCrossRefGoogle Scholar
  35. Graf J, Kikuchi Y, Rio RVM (2006) Leeches and their microbiota: naturally simple symbiosis models. Trends Microbiol 14:365–371PubMedCrossRefGoogle Scholar
  36. Gronwald W, Bomke J, Maurer T, Domogalla B, Huber F, Schumann F, Kremer W, Fink F, Rysiok T, Frech M, Kalbitzer HR (2008) Structure of the leech protein saratin and characterization of its binding to collagen. J Mol Biol 381:913–927PubMedCrossRefGoogle Scholar
  37. Hach W, Scholz S, Hach-Wunderle V (2005) Die Therapie mit Blutegeln in der Medizin und Gefäßmedizin. Gefäßchirurgie 10:195–202CrossRefGoogle Scholar
  38. Harbrecht U (2011) Old and new anticoagulants. Hämostaseologie 31:21–27PubMedCrossRefGoogle Scholar
  39. Harsfalvi J, Stassen JM, Hoylaerts MF, Van Houtte E, Sawyer RT, Vermylen J, Deckmyn H (1995) Calin from Hirudo medicinalis, an inhibitor of von Willebrand factor binding to collagen under static and flow conditions. Blood 85:705–711PubMedGoogle Scholar
  40. Harvey RP, Degryse E, Stefani L, Schamber F, Cazenave JP, Courtney M, Tolstoshev P, Lecocq JP (1986) Cloning and expression of a cDNA coding for the anticoagulant hirudin from the bloodsucking leech, Hirudo medicinalis. Proc Natl Acad Sci USA 83:1084–1088PubMedCrossRefGoogle Scholar
  41. Haycraft JB (1884) On the action of a secretion obtained from the medicinal leech on the coagulation of the blood. Proc R Soc Lond B 36:478–487Google Scholar
  42. Hirsh J (1991) Heparin. N Engl J Med 324:1565–1574PubMedCrossRefGoogle Scholar
  43. Hornebeck W, Soleilhac JM, Tixier JM, Moczar E, Robert L (1987) Inhibition by elastase inhibitors of the formyl Met Leu Phe-induced chemotaxis of rat polymorphonuclear leukocytes. Cell Biochem Funct 5:113–122PubMedCrossRefGoogle Scholar
  44. Hovingh P, Linker A (1999) Hyaluronidase activity in leeches (Hirudinea). Comp Biochem Physiol B Biochem Mol Biol 124:319–326PubMedCrossRefGoogle Scholar
  45. Jensen KB, Rinvik SF, Venneroed AM (1965) Experiments on the in vitro inactivation of plasma kinins by carboxypeptidase B, plasma kininase or erythrocyte kininase in the presence of disulfiram. Acta Pharmacol Toxicol (Copenh) 22:187–195CrossRefGoogle Scholar
  46. Johnson PH (1994) Hirudin: clinical potential of a thrombin inhibitor. Annu Rev Med 45:165–177PubMedCrossRefGoogle Scholar
  47. Junger WG, Hallstrom S, Redl H, Schlag G (1992) Inhibition of human, ovine, and baboon neutrophil elastase with eglin c and secretory leukocyte proteinase inhibitor. Biol Chem Hoppe Seyler 373:119–122PubMedCrossRefGoogle Scholar
  48. Knobloch K, Gohritz A, Busch K, Spies M, Vogt PM (2007) Hirudo medicinalis-leech applications in plastic and reconstructive microsurgery—a literature review. Handchir Mikrochir Plast Chir 39:103–107PubMedCrossRefGoogle Scholar
  49. Lent CM, Fliegner KH, Freedman E, Dickinson MH (1988) Ingestive behaviour and physiology of the medicinal leech. J Exp Biol 137:513–527PubMedGoogle Scholar
  50. Linker A, Meyer K, Hoffman P (1960) The production of hyaluronate oligosaccharides by leech hyaluronidase and alkali. J Biol Chem 235:924–927PubMedGoogle Scholar
  51. Märki WE, Grossenbacher H, Grütter MG, Liersch MH, Meyhack B, Heim J (1991) Recombinant hirudin: genetic engineering and structure analysis. Semin Thromb Hemost 17:88–93PubMedCrossRefGoogle Scholar
  52. Major RH (1954) A history of medicine. Charles Thomas, Springfield, IllinoisGoogle Scholar
  53. Mann KH (1962) Leeches (Hirudinea). Pergamon, OxfordGoogle Scholar
  54. Markwardt F (1955) Untersuchungen über hirudin. Naturwiss 42:537–538CrossRefGoogle Scholar
  55. Markwardt F, Nowak G, Stürzebecher J, Griessbach U, Walsmann P, Vogel G (1984) Pharmacokinetics and anticoagulant effect of hirudin in man. Thromb Haemost 52:160–163PubMedGoogle Scholar
  56. Markwardt F, Nowak G, Stürzebecher J, Vogel G (1988) Clinico-pharmacological studies with recombinant hirudin. Thromb Res 52:393–400PubMedCrossRefGoogle Scholar
  57. Marshall I (1984) Characterization and distribution of histamine H1- and H2-receptors in precapillary vessels. J Cardiovasc Pharmacol 6(Suppl 4):S587–S597PubMedCrossRefGoogle Scholar
  58. Marshall CG, Lent CM (1988) Excitability and secretory activity in the salivary gland cells of jawed leeches (Hirudinea: Gnathobdellida). J Exp Biol 137:89–105PubMedGoogle Scholar
  59. Michalsen A, Deuse U, Esch T, Dobos G, Moebus S (2001) Effect of leeches therapy (Hirudo medicinalis) in painful osteoarthritis of the knee: a pilot study. Ann Rheum Dis 60:986PubMedCrossRefGoogle Scholar
  60. Min GS, Sarkar IN, Siddall ME (2010) Salivary transcriptome of the North American medicinal leech, Macrobdella decora. J Parasitol 96:1211–1221PubMedCrossRefGoogle Scholar
  61. Mory RN, Mindell D, Bloom DA (2000) The leech and the physician: biology, etymology, and medical practice with Hirudinea medicinalis. World J Surg 24:878–883PubMedCrossRefGoogle Scholar
  62. Moser M, Auerswald E, Mentele R, Eckerskorn C, Fritz H, Fink E (1998) Bdellastasin, a serine protease inhibitor of the antistasin family from the medical leech (Hirudo medicinalis)—primary structure, expression in yeast, and characterisation of native and recombinant inhibitor. Eur J Biochem 253:212–220PubMedCrossRefGoogle Scholar
  63. Munro R, Hechtel FO, Sawyer RT (1989) Sustained bleeding after a leech bite in the apparent absence of hirudin. Thromb Haemost 61:366–369PubMedGoogle Scholar
  64. Munro R, Jones CP, Sawyer RT (1991) Calin—a platelet adhesion inhibitor from the saliva of the medicinal leech. Blood Coagul Fibrinolysis 2:179–184PubMedCrossRefGoogle Scholar
  65. Nowak G, Schrör K (2007) Hirudin—the long and stony way from an anticoagulant peptide in the saliva of medicinal leech to a recombinant drug and beyond. A historical piece. Thromb Haemost 98:116–119PubMedGoogle Scholar
  66. Olson ST, Shore JD (1982) Demonstration of a two-step reaction mechanism for inhibition of alpha-thrombin by antithrombin III and identification of the step affected by heparin. J Biol Chem 257:14891–14895PubMedGoogle Scholar
  67. Oppler P (1904) Feinere Anatomie der im Kopf- und Halsteil von Hirudo vorkommenden Drüsen. Dissertation, University of BernGoogle Scholar
  68. Parent F, Bridey F, Dreyfus M, Musset D, Grimon G, Duroux P, Meyer D, Simonneau G (1993) Treatment of severe venous thrombo-embolism with intravenous hirudin (HBW 023): an open pilot study. Thromb Haemost 70:386–388PubMedGoogle Scholar
  69. Payne V, Kam PC (2004) Mast cell tryptase: a review of its physiology and clinical significance. Anaesthesia 59:695–703PubMedCrossRefGoogle Scholar
  70. Petrauskiene L, Utevska O, Utevsky S (2009) Can different species of medicinal leeches (Hirudo spp.) interbreed? Invertebrate Biology 128:324–331CrossRefGoogle Scholar
  71. Pettigrew HD, Teuber SS, Gershwin ME (2009) Clinical significance of complement deficiencies. Ann N Y Acad Sci 1173:108–123PubMedCrossRefGoogle Scholar
  72. Pilcher H (2004) Medicinal leeches: stuck on you. Nature 432:10–11PubMedCrossRefGoogle Scholar
  73. Qasim MA, Ganz PJ, Sauners CW, Bateman KS, James MN, Laskowski M (1997) Interscaffolding additivity. Association of P1 variants of eglin c and of turkey ovomucoid third domain with serine proteinases. Biochemistry 36:1598–1607PubMedCrossRefGoogle Scholar
  74. Rester U, Bode W, Moser M, Parry MA, Huber R, Auerswald E (1999) Structure of the complex of the antistasin-type inhibitor bdellastasin with trypsin and modelling of the bdellastasin-microplasmin system. J Mol Biol 293:93–106PubMedCrossRefGoogle Scholar
  75. Reverter D, Vendrell J, Canals F, Horstmann J, Aviles FX, Fritz H, Sommerhoff CP (1998) A carboxypeptidase inhibitor from the medical leech Hirudo medicinalis. Isolation, sequence analysis, cDNA cloning, recombinant expression, and characterization. J Biol Chem 273:32927–32933PubMedCrossRefGoogle Scholar
  76. Ribeiro JM, Makoul GT, Levine J, Robinson DR, Spielman A (1985) Antihemostatic, antiinflammatory, and immunosuppressive properties of the saliva of a tick, Ixodes dammini. J Exp Med 161:332–344PubMedCrossRefGoogle Scholar
  77. Riede F, Koenen W, Goerdt S, Ehmke H, Faulhaber J (2010) Medicinal leeches for the treatment of venous congestion and hematoma after plastic reconstructive surgery. J Dtsch Dermatol Ges 8:881–888PubMedGoogle Scholar
  78. Rigbi M, Levy H, Eldor A, Iraqi F, Teitelbaum M, Orevi M, Horovitz A, Galun R (1987a) The saliva of the medicinal leech Hirudo medicinalis—II. Inhibition of platelet aggregation and of leukocyte activity and examination of reputed anaesthetic effects. Comp Biochem Physiol C 88:95–98CrossRefGoogle Scholar
  79. Rigbi M, Levy H, Iraqi F, Teitelbaum M, Orevi M, Alajoutsijarvi A, Horovitz A, Galun R (1987b) The saliva of the medicinal leech Hirudo medicinalis—I. Biochemical characterization of the high molecular weight fraction. Comp Biochem Physiol B 87:567–573CrossRefGoogle Scholar
  80. Rigbi M, Orevi M, Eldor A (1996) Platelet aggregation and coagulation inhibitors in leech saliva and their roles in leech therapy. Semin Thromb Hemost 22:273–278PubMedCrossRefGoogle Scholar
  81. Rosenberg RD (1975) Actions and interactions of antithrombin and heparin. N Engl J Med 292:146–151PubMedCrossRefGoogle Scholar
  82. Roters F-J, Zebe E (1992) Protease inhibitors in the alimentary tract of the medicinal leech Hirudo medicinalis: In vivo and in vitro studies. J Comp Physiol B 162:85–92PubMedCrossRefGoogle Scholar
  83. Sadler JE (1998) Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem 67:395–424PubMedCrossRefGoogle Scholar
  84. Sakharov DV, Plow EF, Rijken DC (1997) On the mechanism of the antifibrinolytic activity of plasma carboxypeptidase B. J Biol Chem 272:14477–14482PubMedCrossRefGoogle Scholar
  85. Salzet M, Chopin V, Baert J-L, Matias I, Malecha J (2000) Theromin, a novel leech thrombin inhibitor. J Biol Chem 275:30774–30780PubMedCrossRefGoogle Scholar
  86. Sarma JV, Ward PA (2011) The complement system. Cell Tissue Res 343:227–235PubMedCrossRefGoogle Scholar
  87. Sawyer RT (1986a) Leech biology and behaviour 1: anatomy, physiology, and behaviour. Oxford University Press, OxfordGoogle Scholar
  88. Sawyer RT (1986b) Leech biology and behaviour 2: feeding biology, ecology and systematics. Oxford University Press, OxfordGoogle Scholar
  89. Seemüller U, Meier M, Ohlsson K, Müller HP, Fritz H (1977) Isolation and characterisation of a low molecular weight inhibitor (of chymotrypsin and human granulocytic elastase and cathepsin G) from leeches. Hoppe Seylers Z Physiol Chem 358:1105–1107PubMedCrossRefGoogle Scholar
  90. Seemüller U, Eulitz M, Fritz H, Strobl A (1980) Structure of the elastase-cathepsin G inhibitor of the leech Hirudo medicinalis. Hoppe Seylers Z Physiol Chem 361:1841–1846PubMedCrossRefGoogle Scholar
  91. Siddall ME, Trontelj P, Utevsky SY, Nkamany M, Macdonald KS (2007) Diverse molecular data demonstrate that commercially available medicinal leeches are not Hirudo medicinalis. Proc R Soc B 274:1481–1487PubMedCrossRefGoogle Scholar
  92. Silver AC, Rabinowitz NM, Kuffer S, Graf J (2007) Identification of Aeromonas veronii genes required for colonization of the medicinal leech, Hirudo verbana. J Bacteriol 189:6763–6772PubMedCrossRefGoogle Scholar
  93. Skrzypczak-Jankun E, Carperos VE, Ravichandran KG, Tulinsky A, Westbrook M, Maraganore JM (1991) Structure of the hirugen and hirulog 1 complexes of alpha-thrombin. J Mol Biol 221:1379–1393PubMedGoogle Scholar
  94. Snider GL, Stone PJ, Lucey EC, Breuer R, Calore JD, Seshadri T, Catanese A, Maschler R, Schnebli HP (1985) Eglin-c, a polypeptide derived from the medicinal leech, prevents human neutrophil elastase-induced emphysema and bronchial secretory cell metaplasia in the hamster. Am Rev Respir Dis 132:1155–1161PubMedGoogle Scholar
  95. Söllner C, Mentele R, Eckerskorn C, Fritz H, Sommerhoff CP (1994) Isolation and characterization of hirustasin, an antistasin-type serine-proteinase inhibitor from the medical leech Hirudo medicinalis. Eur J Biochem 219:937–943PubMedCrossRefGoogle Scholar
  96. Sommerhoff CP, Söllner C, Mentele R, Piechottka GP, Auerswald EA, Fritz H (1994) A Kazal-type inhibitor of human mast cell tryptase: isolation from the medical leech Hirudo medicinalis, characterization, and sequence analysis. Biol Chem Hoppe Seyler 375:685–694PubMedCrossRefGoogle Scholar
  97. Steranka LR, Manning DC, De Haas CJ, Ferkany JW, Borosky SA, Connor JR, Vavrek RJ, Stewart JM, Snyder SH (1988) Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions. Proc Natl Acad Sci USA 85:3245–3249PubMedCrossRefGoogle Scholar
  98. Stone SR, Hofsteenge J (1991) Recombinant hirudin: kinetic mechanism for the inhibition of human thrombin. Protein Eng 4:295–300PubMedCrossRefGoogle Scholar
  99. Stone SR, Tapparelli C (1995) Thrombin inhibitors as antithrombotic agents: the importance of rapid inhibition. J Enzyme Inhib 9:3–15PubMedCrossRefGoogle Scholar
  100. Stubbs MT, Morenweiser R, Stürzebecher J, Bauer M, Bode W, Huber R, Piechottka GP, Matschiner G, Sommerhoff CP, Fritz H, Auerswald EA (1997) The three-dimensional structure of recombinant leech-derived tryptase inhibitor in complex with trypsin. Implications for the structure of human mast cell tryptase and its inhibition. J Biol Chem 272:19931–19937PubMedCrossRefGoogle Scholar
  101. Suter S, Chevallier I (1988) The effect of eglin C on the function of human neutrophils in vitro. Biol Chem Hoppe Seyler 369:573–578PubMedCrossRefGoogle Scholar
  102. Tuszynski GP, Gasic TB, Gasic GJ (1987) Isolation and characterization of antistasin. An inhibitor of metastasis and coagulation. J Biol Chem 262:9718–9723PubMedGoogle Scholar
  103. Utevsky S, Kovalenko N, Doroshenko K, Petrauskiene L, Klymenko V (2009) Chromosome numbers for three species of medicinal leeches (Hirudo spp.). Syst Parasitol 74:95–102PubMedCrossRefGoogle Scholar
  104. Vanderslice P, Ballinger SM, Tam EK, Goldstein SM, Craik CS, Caughey GH (1990) Human mast cell tryptase: multiple cDNAs and genes reveal a multigene serine protease family. Proc Nat Acad Sci USA 87:3811–3815PubMedCrossRefGoogle Scholar
  105. Vilahur G, Duran X, Juan-Babot O, Casani L, Badimon L (2004) Antithrombotic effects of saratin on human atherosclerotic plaques. Thromb Haemost 92:191–200PubMedGoogle Scholar
  106. Wardlaw JM, Sandercock PA, Murray V (2009) Should more patients with acute ischaemic stroke receive thrombolytic treatment? BMJ 339:b4584PubMedCrossRefGoogle Scholar
  107. Weitz JI, Huboda M, Massel D, Maraganore J, Hirsh J (1990) Clot-bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors. J Clin Invest 86:385–391PubMedCrossRefGoogle Scholar
  108. Wenning A (1996) Managing high salt loads: from neuron to urine in the leech. Physiol Zool 69:719–745Google Scholar
  109. Wilkin PJ, Scofield AM (1991) Growth of the medicinal leech, Hirudo medicinalis, under natural and laboratory conditions. Freshwater Biol 25:547–553CrossRefGoogle Scholar
  110. Yanes O, Villanueva J, Querol E, Aviles FX (2005) Functional screening of serine protease inhibitors in the medical leech Hirudo medicinalis monitored by intensity fading MALDI-TOF MS. Mol Cell Proteomics 4:1602–1613PubMedCrossRefGoogle Scholar
  111. Yantis MA, O'Toole KN, Ring P (2009) Leech therapy. Am J Nurs 109:36–42PubMedCrossRefGoogle Scholar
  112. Yip J, Shen Y, Andrews RK (2004) Primary platelet adhesion receptors. Australian Biochemist 35:4–8Google Scholar
  113. Yousef GM, Diamandis EP (2001) The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr Rev 22:184–204PubMedCrossRefGoogle Scholar
  114. Zavalova LL, Artamonova II, Berezhnoy SN, Tagaev AA, Baskova IP, Andersen J, Roepstorff P, Egorov TA (2003) Multiple forms of medicinal leech destabilase-lysozyme. Biochem Biophys Res Commun 306:318–323PubMedCrossRefGoogle Scholar
  115. Zavalova LL, Baskova IP, Lukyanov SA, Sass AV, Snezhkov EV, Akopov SB, Artamonova II, Archipova VS, Nesmeyanov VA, Kozlov DG, Benevolensky SV, Kiseleva VI, Poverenny AM, Sverdlov ED (2000) Destabilase from the medicinal leech is a representative of a novel family of lysozymes. Biochim Biophys Acta–Prot Struct Mol Enzymol 1478:69–77CrossRefGoogle Scholar
  116. Zavalova LL, Kuzina EV, Levina NB, Baskova IP (1993) Monomerization of fragment DD by destabilase from the medicinal leech does not alter the N-terminal sequence of the gamma-chain. Thromb Res 71:241–244PubMedCrossRefGoogle Scholar
  117. Zavalova LL, Yudina TG, Artamonova II, Baskova IP (2006) Antibacterial non-glycosidase activity of invertebrate destabilase-lysozyme and of its helical amphipathic peptides. Chemotherapy 52:158–160PubMedCrossRefGoogle Scholar
  118. Zerbst-Boroffka I, Wenning A (1986) Mechanisms of regulatory salt and water excretion in the leech, Hirudo medicinalis L. Zool Beitr NF 30:359–377Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Animal Physiology and Biochemistry, Zoological InstituteErnst Moritz Arndt-UniversityGreifswaldGermany

Personalised recommendations