, 98:909 | Cite as

Regional, seasonal and interspecific variation in 15N and 13C in sympatric mouse lemurs

  • S. Jacques Rakotondranary
  • Ulrich Struck
  • Christian Knoblauch
  • Jörg U. Ganzhorn
Original Paper


Madagascar provides some of the rare examples where two or more primate species of the same genus and with seemingly identical niche requirements occur in sympatry. If congeneric primate species co-occur in other parts of the world, they differ in size in a way that is consistent with Hutchinson’s rule for coexisting species, or they occupy different ecological niches. In some areas of Madagascar, mouse lemurs do not follow these “rules” and thus seem to violate one of the principles of community ecology. In order to understand the mechanisms that allow coexistence of sympatric congeneric species without obvious niche differentiation, we studied food composition of two identical sized omnivorous mouse lemur species, Microcebus griseorufus and M. murinus with the help of stable isotope analyses (δ 15N and δ 13C). The two species are closely related sister species. During the rich season, when food seems abundant, the two species do not differ in their nitrogen isotope composition, indicating that the two species occupy the same trophic level. But they differ in their δ 13C values, indicating that M. griseorufus feeds more on C4 and CAM (Crassulacean-acid-metabolism) plants than M. murinus. During the lean season, M. murinus has lower δ 15N values, indicating that the two species feed at different trophic levels during times of food shortage. Hybrids between the two species showed intermediate food composition. The results reflect subtle differences in foraging or metabolic adaptations that are difficult to quantify by traditional observations but that represent possibilities to allow coexistence of species.


Stable isotopes Competition Trophic level Feeding ecology Microcebus Madagascar 



This study was carried out under the “Accord de Collaboration” between Madagascar National Parks (MNP), the University of Antananarivo and the University of Hamburg. We thank Chantal Andrianarivo, Jocelyn Rakotomala, Domoina Rakotomalala of MNP, the late Olga Ramilijaona, Daniel Rakotondravony, Manon Vincelette, Jean-Baptiste Ramanamanjato and their environmental team of QMM for their collaboration and support. We acknowledge the authorization by the Ministère de l’Environement, des Eaux et Forêts et du Tourisme, MNP and the University of Antananarivo and the help of Ernest Refaly, Kai Schütte, Ole Theisinger, Jutta Hammer, Irene Tomaschewski, Birgit Schwinge, Susanne Kobbe, Roberto Rakoto, Fiadana Ijo, Tahiana Andriaharimalala, Miha Mahatanty, Mosa Vonjoloke, Soja Fahamaro, Maharavo, Mandiavato, and Bertin Tsimihanta. We thank S. Thatje, B. Crowley and three unknown reviewers for their very helpful comments. The study was financed by the Deutsche Forschungsgemeinschaft (Ga 342/14) and the Deutscher Akademischer Austauschdienst.


  1. Andriaharimalala T, Roger E, Rajeriarison C, Ganzhorn JU (2011) Analyse structurale des différents types de formation végétale du Parc National d’Andohahela (Madagascar) comme habitat des animaux. Malagasy NatureGoogle Scholar
  2. Austin AT, Vitousek PM (1998) Nutrient dynamics on a precipitation gradient in Hawaii. Oecologia 113:519–529CrossRefGoogle Scholar
  3. Badeck FW, Tcherkez G, Nogues S, Piel C, Ghashghaie J (2005) Post-photo synthetic fractionation of stable carbon isotopes between plant organs — a widespread phenomenon. Rapid Commun Mass Spectrom 19:1381–1391PubMedCrossRefGoogle Scholar
  4. Barthlott W, Lauer W, Placke A (1996) Global distribution of species diversity in vascular plants: towards a world map of phytodiversity. Erdkunde 50:317–327CrossRefGoogle Scholar
  5. Cherel Y, Hobson KA, Guinet C, Vanpe C (2007) Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean. J Anim Ecol 76:826–836PubMedCrossRefGoogle Scholar
  6. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1309PubMedCrossRefGoogle Scholar
  7. Cormie AB, Schwarcz HP (1996) Effects of climate on deer bone delta N-15 and delta C-13: Lack of precipitation effects on delta N-15 for animals consuming low amounts of C-4 plants. Geochim Cosmochim Acta 60:4161–4166CrossRefGoogle Scholar
  8. Crowley BE, Thorén S, Rasoazanabary E, Vogel ER, Barrett MA, Zohdy S, Blanco MB, McGoogan KC, Arrigo-Nelson SJ, Irwin MT, Wright PC, Radespiel U, Godfrey LR, Koch PL, Dominy NJ (2011) Explaining geographical variation in the isotope composition of mouse lemurs (Microcebus). J Biogeogr. doi: 10.1111/j.1365-2699.2011.02551.x
  9. Dammhahn M, Kappeler P (2008) Comparative feeding ecology of sympatric Microcebus berthae and M. murinus. Int J Primatol 29:1567–1589CrossRefGoogle Scholar
  10. Dammhahn M, Kappeler PM (2010) Scramble or contest competition over food in solitarily foraging mouse lemurs (Microcebus spp.): new insights from stable isotopes. Am J Phys Anthropol 141:181–189PubMedGoogle Scholar
  11. DeNiro MJ (1987) Stable isotopy and archaeology. Am Sci 75:182–191Google Scholar
  12. DeNiro MJ, Epstein S (1978) Influence of diet on distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506CrossRefGoogle Scholar
  13. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351CrossRefGoogle Scholar
  14. Eggers T, Jones TH (2000) You are what you eat … or are you? Trends Ecol Evol 15:265–266PubMedCrossRefGoogle Scholar
  15. Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:121–126PubMedCrossRefGoogle Scholar
  16. Fleagle JG (1998) Primate adaptation and evolution. Academic Press, OrlandoGoogle Scholar
  17. Ganzhorn JU (1989) Niche separation of seven lemur species in the eastern rainforest of Madagascar. Oecologia 79:279–286CrossRefGoogle Scholar
  18. Ganzhorn JU, Wright PC, Ratsimbazafy J (1999) Primate communities: Madagascar. In: Fleagle JG, Janson C, Reed KE (eds) Primate communities. Cambridge University Press, Cambridge, pp 75–89CrossRefGoogle Scholar
  19. Gause G (1934) The struggle for existence. Williams and Wilkins, BaltimoreGoogle Scholar
  20. Génin F (2008) Life in unpredictable environments: First investigation of the natural history of Microcebus griseorufus. Int J Primatol 29:303–321CrossRefGoogle Scholar
  21. Génin FGS, Masters JC, Ganzhorn JU (2010) Gummivory in cheirogaleids: primitive retention or adaptation to hypervariable environments? In: Burrows AM, Nash LT (eds) Exudativory in primates. Springer, New York, pp 123–140CrossRefGoogle Scholar
  22. Gligor M, Ganzhorn JU, Rakotondravony D, Ramilijaona OR, Razafimahatratra E, Zischler H, Hapke A (2009) Hybridization between mouse lemurs in an ecological transition zone in southern Madagascar. Mol Ecol 18:520–533PubMedCrossRefGoogle Scholar
  23. Goodman SM (1999) A floral and faunal inventory of the Réserve Naturelle Intégrale d'Andohahela, Madagascar: with reference to elevational variation. Fieldiana ns 94. Field Museum Natural History, ChicagoGoogle Scholar
  24. Grant PR, Grant BR (2006) Evolution of character displacement in Darwin's finches. Science 313:224–226PubMedCrossRefGoogle Scholar
  25. Grant BR, Grant PR (2010) Songs of Darwin's finches diverge when a new species enters the community. Proc Natl Acad Sci 107:20156–20163PubMedCrossRefGoogle Scholar
  26. Grosjean S, Strauss A, Glos J, Randrianiaina RD, Ohler A, Vences M (2011) Morphological and ecological uniformity in the funnel-mouthed tadpoles of Malagasy litter frogs, subgenus Chonomantis. Zool J Linn Soc 162:149–183CrossRefGoogle Scholar
  27. Herrera LG, Hobson KA, Rodriguez M, Hernandez P (2003) Trophic partitioning in tropical rain forest birds: insights from stable isotope analysis. Oecologia 136:439–444PubMedCrossRefGoogle Scholar
  28. Houle A (1997) The role of phylogeny and behavioral competition in the evolution of coexistence among primates. Can J Zool 75:827–846CrossRefGoogle Scholar
  29. Hutchinson GE (1959) Homage to Santa Rosalia, or why are there so many kinds of animals? Am Nat 93:137–159Google Scholar
  30. Joly-Radko M, Zimmermann E (2010) Seasonality in gum and honeydew feeding in Gray mouse lemurs. In: Burrowes AM, Nash LT (eds) The evolution of exadutivory in primates. Springer, New YorkGoogle Scholar
  31. Kalko EKV (1998) Organisation and diversity of tropical bat communities through space and time. Zoology 101:281–297Google Scholar
  32. Kobbe S, Dausmann KH (2009) Hibernation in Malagasy mouse lemurs as a strategy to counter environmental challenge. Naturwissenschaften 96:1221–1227PubMedCrossRefGoogle Scholar
  33. Kobbe S, Ganzhorn JU, Dausmann K (2011) Extreme individual flexibility of heterothermy in free-ranging Malagasy mouse lemurs (Microcebus griseorufus). J Comp Physiol B 181:165–173PubMedCrossRefGoogle Scholar
  34. Lahann P (2007) Feeding ecology and seed dispersal of sympatric cheirogaleid lemurs (Microcebus murinus, Cheirogaleus medius, Cheirogaleus major) in the littoral rainforest of south-east Madagascar. J Zool 271:88–98CrossRefGoogle Scholar
  35. Lidén K, Angerbjörn A (1999) Dietary change and stable isotopes: a model of growth and dormancy in cave bears. Proc R Soc Lond B 266:1779–178CrossRefGoogle Scholar
  36. Loudon JE, Sponheimer M, Sauther ML, Cuozzo FP (2007) Intraspecific variation in hair delta C-13 and delta N-15 values of ring-tailed lemurs (Lemur catta) with known individual histories, behavior, and feeding ecology. Am J Phys Anthropol 133:978–985PubMedCrossRefGoogle Scholar
  37. Marshall JD, Brooks R, Lajtha K (2007) Sources of variation in the stable isotopic composition of plants. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell Publishing, Malden, pp 22–60CrossRefGoogle Scholar
  38. Mariotti A (1983) Atmospheric nitrogen is a reliable standard for natural N-15 abundance measurements. Nature 303:685–687CrossRefGoogle Scholar
  39. Moat J, Smith P (2007) Atlas of the vegetation of Madagascar. Kew Publishing, Royal Botanic Gardens, KewGoogle Scholar
  40. Murray AP, Edwards D, Hope JM, Boreham CJ, Booth WE, Alexander RA, Summons RE (1998) Carbon isotope biogeochemistry of plant resins and derived hydrocarbons. Org Geochem 29:1199–1214CrossRefGoogle Scholar
  41. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  42. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecol 83:703–718CrossRefGoogle Scholar
  43. Rabenantoandro J, Randriatafika F, Lowry PP II (2007) Floristic and structural characteristics of remnant littoral forest sites in the Tolagnaro area. In: Ganzhorn JU, Goodman SM, Vincelette M (eds) Biodiversity, ecology and conservation of littoral ecosystems in southeastern Madagascar, Tolagnaro (Fort Dauphin). Smithsonian Institution, Washington, D.C., pp 65–93Google Scholar
  44. Rakotondranary JS, Hapke A, Ganzhorn JU (2011) Diversity of Microcebus spp. along an environmental gradient. Int J Primatol. doi  10.1007/s10764-011-9521-z
  45. Rakotondranary SJ, Ganzhorn JU (2011) Habitat separation of sympatric Microcebus spp. in the dry spiny forest of south-eastern Madagascar. Folia PrimatolGoogle Scholar
  46. Rakotondravony R, Radespiel U (2009) Varying patterns of coexistence of two mouse lemur species (Microcebus ravelobensis and M. murinus) in a heterogeneous landscape. Amer J Primatol 71:928–938CrossRefGoogle Scholar
  47. Ramanamanjato JB, Ganzhorn JU (2001) Effects of forest fragmentation, introduced Rattus rattus and the role of exotic tree plantations and secondary vegetation for the conservation of an endemic rodent and a small lemur in littoral forests of southeastern Madagascar. Anim Conserv 4:175–183CrossRefGoogle Scholar
  48. Rosindell J, Hubbell SP, Etienne RS (2011) The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol Evol 26:340–348PubMedCrossRefGoogle Scholar
  49. Schmid J, Ganzhorn JU (2009) Optional strategies for reduced metabolism in gray mouse lemurs. Naturwissenschaften 96:737–741PubMedCrossRefGoogle Scholar
  50. Schmid J, Speakman JR (2000) Gender related variation in the daily energy expenditure of the grey mouse lemur (Microcebus murinus): a small primate that uses torpor. J Comp Physiol B 170:633–641PubMedCrossRefGoogle Scholar
  51. Schmid J, Speakman JR (2009) Torpor and energetic consequences in free-ranging grey mouse lemurs (Microcebus murinus): a comparison of dry and wet forests. Naturwissenschaften 96:609–620PubMedCrossRefGoogle Scholar
  52. Schoeninger MJ, Iwaniec UT, Nash LT (1998) Ecological attributes recorded in stable isotope ratios of arboreal prosimian hair. Oecologia 113:222–230CrossRefGoogle Scholar
  53. Schreier BM, Harcourt AH, Coppeto SA, Somi MF (2009) Interspecific competition and niche separation in primates: a global analysis. Biotropica 41:283–291CrossRefGoogle Scholar
  54. Schwab D, Ganzhorn JU (2004) The distribution and population structure of Microcebus berthae, the smallest known primate and its habitat use in relation to other sympatric cheirogaleids. Int J Primatol 25:307–330CrossRefGoogle Scholar
  55. Siemers BM, Swift SM (2006) Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behav Ecol Sociobiol 59:373–380CrossRefGoogle Scholar
  56. Siemers BM, Görlitz H, Robsomanitrandrasana E, Piep M, Ramanamanjato JB, Rakotondravony D, Ramilijaona O, Ganzhorn JU (2007) Sensory basis of food detection in wild Microcebus murinus. Int J Primatol 28:291–304CrossRefGoogle Scholar
  57. Siemers BM, Greif S, Borissov I, Voigt-Heucke SL, Voigt CC (2011) Divergent trophic levels in two cryptic sibling bat species. Oecologia 166:69–78PubMedCrossRefGoogle Scholar
  58. Simberloff D, Dayan T (1991) The guild concept and the structure of ecological communities. Annu Rev Ecol Syst 22:115–143CrossRefGoogle Scholar
  59. Smith BN, Epstein S (1971) Two categories of C-13/C-12 ratios for higher plants. Plant Physiol 47:380–384PubMedCrossRefGoogle Scholar
  60. Struck U, Altenbach AV, Gaulke M, Glaw F (2002) Tracing the diet of the monitor lizard Varanus mabitang by stable isotope analyses (delta N-15, delta C-13). Naturwissenschaften 89:470–473PubMedCrossRefGoogle Scholar
  61. Thorén S, Quietzsch F, Schwochow D, Sehen L, Meusel C, Meares K, Radespiel U (2011) Seasonal changes in feeding ecology and activity patterns of two sympatric mouse lemur species, the Gray mouse lemur (Microcebus murinus) and the Golden-brown mouse lemur (M. ravelobensis), in northwestern Madagascar. Int J Primatol 32:566–586CrossRefGoogle Scholar
  62. Troughton JH, Card KA (1975) Temperature effects on carbon-isotope ratio of C3, C4 and Crassulacean-Acid-Metabolism (CAM) plants. Planta 123:185–190CrossRefGoogle Scholar
  63. Vincelette M, Dumouchel J, Giroux J, Heriarivo R (2007) The Tolagnaro (Fort Dauphin) region: a brief overview of the geology, hydrology, and climatology. In: Ganzhorn JU, Goodman SM, Vincelette M (eds) Biodiversity, ecology and conservation of littoral forest ecosystems in southeastern Madagascar, Tolagnaro (Fort Dauphin). Smithsonian, Washington D.C., pp 9–17Google Scholar
  64. Vogel ER, Crowley BE, Knott CD, Blakely MD, Larsen MD, Dominy NJ (2011) Non-invasive method for quantifying nitrogen balance in free-ranging primates. Int J PrimatolGoogle Scholar
  65. Voigt CC, Matt F (2004) Nitrogen stress causes unpredictable enrichment of 15 N in two nectar-feeding bat species. J Exp Biol 206:1419–1427CrossRefGoogle Scholar
  66. Winter K (1979) Delta-C-13 values of some succulent plants from Madagascar. Oecologia 40:103–112CrossRefGoogle Scholar
  67. Yoder AD, Burns MM, Génin F (2002) Molecular evidence of reproductive isolation in sympatric sibling species of mouse lemurs. Int J Primatol 23:1335–1343CrossRefGoogle Scholar
  68. Yoder AD, Yang Z (2004) Divergence dates for Malagasy lemurs estimated from multiple gene loci: geological and evolutionary context. Mol Ecol 13:757–773PubMedCrossRefGoogle Scholar
  69. Zinner D, Arnold ML, Roos C (2011) The strange blood: natural hybridization in primates. Evol Anthropol 20:96–103CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • S. Jacques Rakotondranary
    • 1
  • Ulrich Struck
    • 2
  • Christian Knoblauch
    • 3
  • Jörg U. Ganzhorn
    • 1
  1. 1.Department of Animal Ecology and ConservationUniversity of Hamburg, Biozentrum GrindelHamburgGermany
  2. 2.Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu BerlinBerlinGermany
  3. 3.Institute of Soil ScienceUniversity of HamburgHamburgGermany

Personalised recommendations