, 98:903 | Cite as

Pelagic crinoids (Roveacrinida, Crinoidea) discovered in the Neogene of Poland

  • Przemysław Gorzelak
  • Mariusz A. Salamon
  • Bruno Ferré
Short Communication


Until recently, it has been assumed that pelagic crinoids, the roveacrinids (Roveacrinida, Crinoidea), became extinct during the Cretaceous–Paleogene boundary event. Recent finds of well-preserved roveacrinidal remains (brachials and radials) in the Danian (Early Paleogene) of Poland showed that they survived into the earliest Cenozoic. This group was thus characterized as a “dead clade walking”. Here, we present fossil evidence that these pelagic crinoids survived in Poland until at least the Middle Miocene (Badenian, ca. 14 Myr ago)—more than 50 Myr after their supposed extinction. These Miocene roveacrinids constitute the first documented evidence of Roveacrinida in strata of Neogene age, thus prolonging the stratigraphic range of pelagic crinoids. This find characterizes the order as a “Lazarus taxon” rather than a “dead clade walking” group.


Echinodermata Crinoidea Roveacrinida Lazarus Neogene 



Special thanks are due to Nestor Sander (Modesto, California), who provided useful suggestions for the syntactical improvement of the text in the final version. Bruno Granier (Brest University, France) provided valuable advice. Comments by Hans Hess (Natural History Museum, Basel) helped improve the manuscript. We would like to also thank Bradley Deline (University of West Georgia) and two anonymous referees for providing us with constructive comments and suggestions. P. Gorzelak gratefully acknowledges the financial support of the Foundation for Polish Science. This project was partly supported by the KBN grant no. N307 138835.

Supplementary material

114_2011_838_MOESM1_ESM.pdf (1.1 mb)
ESM 1 PDF 1,170 kb


  1. Ausich WI, Donovan SK, Hess H, Simms MJ (1999) Fossil occurrence. In: Hess H et al (eds) Fossil crinoids. Cambridge University Press, Cambridge, pp 41–49CrossRefGoogle Scholar
  2. Bałuk W (1975) Lower Tortonian gastropods from Korytnica, Poland. Part I. Palaeontol Pol 32:1–186Google Scholar
  3. Bałuk W, Radwański A (1977) Organic communities and facies development of the Korytnica Basin (Middle Miocene; Holy Cross Mountains, Central Poland). Acta Geol Pol 27:85–123Google Scholar
  4. Bałuk W, Radwański A (1984) New data on the Korytnica Basin, its organic communities and ecological relationships between species (Middle Miocene; Holy Cross Mountains, Central Poland). Acta Geol Pol 34:179–194Google Scholar
  5. Baumiller TK, Salamon MA, Gorzelak P, Mooi R, Messing ChG, Gahn FJ (2010) Post Paleozoic crinoid radiation in response to benthic predation preceded the Mesozoic marine revolution. Proc Natl Acad Sci USA 107:5893–5896PubMedCrossRefGoogle Scholar
  6. Dickson JAD (2002) Echinoderm skeletal preservation: calcite/aragonite seas and the Mg/Ca ratio of Phanerozoic oceans. Science 298:1222–1224PubMedCrossRefGoogle Scholar
  7. Dickson JAD (2004) Echinoderm skeletal preservation: calcite–aragonite seas and the Mg/Ca ratio of Phanerozoic oceans. J Sed Res 74:355–365CrossRefGoogle Scholar
  8. Ferré B, Granier B (2000) Roveacrinus berthoui nov. sp., Early Hauterivian representative of Roveacrinidae (Roveacrinida, Crinoidea) of Busot (Alicante, Spain). Geol Carpath 51:101–107Google Scholar
  9. Ferré B, Walter S, Bengtson P (2005) Roveacrinids in mid-Cretaceous biostratigraphy of the Sergipe Basin, northeastern Brazil. J S Am Earth Sci 19:259–272CrossRefGoogle Scholar
  10. Flessa KW, Jablonski D (1983) Extinction is here to stay. Paleobiology 9:315–321Google Scholar
  11. Gedl P (1996) Middle Miocene dinoflagellate cysts from the Korytnica Clays (Góry Świętokrzyskie Mountains, Poland). Ann Geol Pol 53:359–374Google Scholar
  12. Hardie LA (1996) Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 my. Geology 24:279–283CrossRefGoogle Scholar
  13. Hess H (1999) Tertiary. In: Hess H et al (eds) Fossil crinoids. Cambridge University Press, Cambridge, pp 223–244CrossRefGoogle Scholar
  14. Hess H (2002) Remains of Saccocomids (Crinoidea: Echinodermata) from the Upper Jurassic of southern Germany. Stuttgarter Beitr Naturk ser B 329:1–57Google Scholar
  15. Jablonski D (1986) Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129–133PubMedCrossRefGoogle Scholar
  16. Jablonski D (2002) Survival without recovery after mass extinctions. Proc Natl Acad Sci USA 99:8139–8144PubMedCrossRefGoogle Scholar
  17. Jagt JWM (1999) Late Cretaceous–early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium: part 2. Crinoids. Scripta Geol 116:59–255Google Scholar
  18. Jagt JWM (2000) Late Cretaceous–early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium: part 6. Conclusions. Scripta Geol 121:505–577Google Scholar
  19. Jagt JWM (2005) The youngest pelagic crinoids (latest Maastrichtian, the Netherlands). Bull Geol Soc Denmark 52:133–139Google Scholar
  20. Kowalewski K (1930) Stratigraphie du Miocène des environs de Korytnica en comparaison avec le Tertiaire des autres territoires du Massif de Ste-Croix. Bull Serv Geol Pol 6:1–211Google Scholar
  21. Martini E (1977) Calcareous nannoplankton from the Korytnica Basin (Middle Miocene; Holy Cross Mountains, Central Poland). Acta Geol Pol 27:125–133Google Scholar
  22. Milsom CV (1999) Rovings of the Roveacrinids. In: Candia Carnevali MD, Bonasoro F (eds) Echinoderm research 1998. A.A. Balkema, Rotterdam, p 339Google Scholar
  23. Poignant A (1992) Organites des marnes de l'éocène supérieur des bords du Lac Mouriscot (Sud de Biarritz, Pyrénées-Atlantiques, France). Geobios 25:11–17CrossRefGoogle Scholar
  24. Radwańska U (1987) Free-living crinoids from the Korytnica Clays (Middle Miocene; Holy Cross Mountains, Central Poland). Acta Geol Pol 37:113–129Google Scholar
  25. Radwański A (1969) Lower Tortonian transgression onto the southern slopes of the Holy Cross Mountains. Acta Geol Pol 19:1–64Google Scholar
  26. Rasmussen HW (1961) A monograph of the Cretaceous Crinoidea: K Dan Vidensk Selsk. Biol Skr 12:428Google Scholar
  27. Rasmussen HW (1978) Articulata. In: Moore RC, Teichert C (ed) Treatise on Invertebrate paleontology. Pt. T, Echinodermata 2, vol. 3. Geological Society of America and University of Kansas Press, ppT813–T928Google Scholar
  28. Salamon MA, Gorzelak P, Ferré B, Lach R (2010) Roveacrinids (Crinoidea, Echinodermata) survived the Cretaceous–Paleogene (K-Pg) extinction event. Geology 38:883–885CrossRefGoogle Scholar
  29. Schneider HL (1989) Zur Morphologie und Ontogenese von Roveacrinus geinitzi n. sp. (Crinoidea, Oberkreide). N Jb Geol Paläont Abh 178:167–181Google Scholar
  30. Schneider HL (1995) Crinoidea (Roveacrinidae) aus dem Unter-Turon in Wüllen (Münsterländer. Kreidebecken/Nordrhein-Westfalen). N Jb Geol Paläont Abh 198:35–46Google Scholar
  31. Simms MJ (1999) Systematics, phylogeny and evolutionary history. In: Hess H et al (eds) Fossil crinoids. Cambridge University Press, Cambridge, pp 31–40CrossRefGoogle Scholar
  32. Stolarski J, Gorzelak P, Mazur M, Marrocchi Y, Meibom A (2009) Nanostructural and geochemical features of the Jurassic isocrinid columnal ossicles. Acta Palaeont Pol 54:69–75CrossRefGoogle Scholar
  33. Wignall PB, Benton MJ (1999) Lazarus taxa and fossil abundance at times of biotic crisis. J Geol Soc 156:453–456CrossRefGoogle Scholar
  34. Złotnik M (2003) Nassariid assemblages from the Korytnica Clays—a useful tool for local stratigraphic correlation. Acta Geol Pol 53:359–374Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Przemysław Gorzelak
    • 1
  • Mariusz A. Salamon
    • 2
  • Bruno Ferré
    • 3
  1. 1.Institute of PaleobiologyPolish Academy of SciencesWarsawPoland
  2. 2.Faculty of Earth SciencesUniversity of SilesiaSosnowiecPoland
  3. 3.Saint Étienne du RouvrayFrance

Personalised recommendations