, 98:825 | Cite as

Paratenic hosts as regular transmission route in the acanthocephalan Pomphorhynchus laevis: potential implications for food webs

  • Vincent Médoc
  • Thierry Rigaud
  • Sébastien Motreuil
  • Marie-Jeanne Perrot-Minnot
  • Loïc Bollache
Original Paper


Although trophically transmitted parasites are recognized to strongly influence food-web dynamics through their ability to manipulate host phenotype, our knowledge of their host spectrum is often imperfect. This is particularly true for the facultative paratenic hosts, which receive little interest. We investigated the occurrence and significance both in terms of ecology and evolution of paratenic hosts in the life cycle of the fish acanthocephalan Pomphorhynchus laevis. This freshwater parasite uses amphipods as intermediate hosts and cyprinids and salmonids as definitive hosts. Within a cohort of parasite larvae, usually reported in amphipod intermediate hosts, more than 90% were actually hosted by small-sized fish. We demonstrated experimentally, using one of these fish, that they get infected through the consumption of parasitized amphipods and contribute to the parasite’s transmission to a definitive host, hence confirming their paratenic host status. A better knowledge of paratenic host spectrums could help us to understand the fine tuning of transmission strategies, to better estimate parasite biomass, and could improve our perception of parasite subwebs in terms of host–parasite and predator–parasite links.


Ecological networks Favorization Food-web ecology Host–parasite links Predator–parasite links Trophic transmission 



We thank Marianne Duployer, Benjamin Gaudillat, Emilie Guyonnet, Clément Lagrue, and Marion Salignon for help in field and laboratory investigations. This study was funded in part by a grant from the ANR (BLAN07-3-183300).


  1. Amin OM, Abdullah SMA, Mhaisen FT (2003) Description of Pomphorhynchus spindletruncatus n. sp. (Acanthocephala: Pomphorhynchidae) from freshwater fishes in northern Iraq, with the erection of a new pomphorhynchid genus, Pyriproboscis n. g., and keys to genera of the Pomphorhynchidae and the species of Pomphorhynchus Monticelli, 1905. Syst Parasitol 54:229–235PubMedCrossRefGoogle Scholar
  2. Amundsen PA, Lafferty KD, Knudsen R, Primicerio R, Klemetsen A, Kuris AM (2009) Food web topology and parasites in the pelagic zone of a subarctic lake. J Anim Ecol 78:563–572PubMedCrossRefGoogle Scholar
  3. Anderson RC (2000) Nematode parasites of vertebrates their development and transmission, 2nd edn. CABI, WallingfordCrossRefGoogle Scholar
  4. Anderson RC, Gordon DM (1982) Processes influencing the distribution of parasites numbers within host populations with special emphasis on parasite-induced mortalities. Parasitology 85:373–398PubMedCrossRefGoogle Scholar
  5. Anderson RO, Neumann RM (1996) Length, weight, and associated structural indices. In: Murphy BR, Willis DW (eds) Fisheries techniques, 2nd edn. American Fisheries Society Publication, Bethesda, pp 447–481Google Scholar
  6. Baldauf SA, Thünken T, Frommen JG, Bakker TCM, Heupel O, Kullmann H (2007) Infection with an acanthocephalan manipulates an amphipod’s reaction to a fish predator’s odours. Int J Parasitol 37:61–65PubMedCrossRefGoogle Scholar
  7. Bauer A, Trouvé S, Grégoire A, Bollache L, Cézilly F (2000) Differential influence of Pomphorhynchus laevis (Acanthocephala) on the behaviour of native invader gammarid species. Int J Parasitol 30:1453–1457PubMedCrossRefGoogle Scholar
  8. Bombarová M, Marec F, Nguyen P, Spakulová M (2007) Divergent location of ribosomal genes in chromosomes of fish thorny-headed worms, Pomphorhynchus laevis and Pomphorhynchus tereticollis (Acanthocephala). Genetica 131:141–149PubMedCrossRefGoogle Scholar
  9. Brown AF (1986) Evidence for density-dependent establishment and survival of Pomphorhynchus laevis (Müller, 1776) (Acanthocephala) in laboratory-infected Salmo gairdneri Richardson and its bearing on wild populations in Leuciscus cephalus (L.). J Fish Biol 28:659–669CrossRefGoogle Scholar
  10. Bush AO, Fernandez JC, Esch GW, Seed JR (2001) Parasitism, the diversity and ecology of animal parasites. Cambridge University Press, CambridgeGoogle Scholar
  11. Byers JE (2009) Including parasites in food webs. Trends Parasitol 25:55–57PubMedCrossRefGoogle Scholar
  12. Cézilly F, Grégoire A, Bertin A (2000) Conflict between co-occurring manipulative parasites? An experimental study of the joint influence of two acanthocephalan parasites on the behaviour of Gammarus pulex. Parasitology 120:625–630PubMedCrossRefGoogle Scholar
  13. Conway Morris S, Crompton DWT (1982) The origins and evolution of the Acanthocephala. Biol Rev 57:85–115CrossRefGoogle Scholar
  14. Crompton DWT (1985) Reproduction. In: Crompton DWT, Nickol BB (eds) Biology of the Acanthocephala. Cambridge University Press, Cambridge, pp 213–271Google Scholar
  15. Düşen S, Oğuz MC (2008) Occurrence of Pomphorhynchus laevis (Acanthocephala) in the Marsh Frog (Rana ridibunda Pallas, 1771), from Turkey. Helminthologia 45:154–156CrossRefGoogle Scholar
  16. Franceschi N, Bauer A, Bollache L, Rigaud T (2008) The effects of parasite age and intensity on variability in acanthocephalan-induced behavioural manipulation. Int J Parasitol 38:1161–1170PubMedCrossRefGoogle Scholar
  17. Hudson PJ, Dobson AP, Lafferty KD (2006) Is a healthy ecosystem one that is rich in parasites? Trends Ecol Evol 21:381–385PubMedCrossRefGoogle Scholar
  18. Johnson PTJ, Dobson A, Lafferty KD, Marcogliese DJ, Memmott J, Orlofske SA, Poulin R, Thieltges DW (2010) When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol Evol 25:362–371PubMedCrossRefGoogle Scholar
  19. Kaldonski N, Perrot-Minnot MJ, Cézilly F (2007) Differential influence of two acanthocephalan parasites on the antipredator behaviour of their common intermediate host. Anim Behav 74:1311–1317CrossRefGoogle Scholar
  20. Kaldonski N, Perrot-Minnot M-J, Motreuil S, Cézilly F (2008) Infection with acanthocephalans increases the vulnerability of Gammarus pulex (Crustacea, Amphipoda) to non-host invertebrate predators. Parasitology 135:627–632PubMedCrossRefGoogle Scholar
  21. Keith P, Allardi J (2001) Atlas des poissons d’eau douce de France. Patrimoines Naturels 47, ParisGoogle Scholar
  22. Kennedy CR (1999) Post-cyclic transmission in Pomphorhynchus laevis (Acanthocephala). Folia Parasitol 46:111–116Google Scholar
  23. Kennedy CR (2006) Ecology of the Acanthocephala. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. Kuris AM, Hechinger RF, Shaw JC, Whitney KL, Aguirre-Macedo L, Boch CA, Dobson AP, Dunham EJ, Fredensborg BL, Huspeni TC, Lorda J, Mababa L, Mancini FT, Mora AB, Pickering M, Talhouk NL, Torchin ME, Lafferty DK (2008) Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454:515–518PubMedCrossRefGoogle Scholar
  25. Lafferty KD, Dobson AP, Kuris AM (2006) Parasites dominate food web links. Proc Natl Acad Sci USA 103:11211–11216PubMedCrossRefGoogle Scholar
  26. Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G, Dobson AP, Dunne JA, Johnson PTJ, Kuris AM, Marcogliese DJ, Martinez ND, Memmott J, Marquet PA, McLaughlin JP, Mordecai EA, Pascual M, Poulin R, Thieltges DW (2008) Parasites in food webs: the ultimate missing links. Ecol Lett 11:533–546PubMedCrossRefGoogle Scholar
  27. Lagrue C, Kaldonski N, Perrot-Minnot MJ, Motreuil S, Bollache L (2007) Modification of hosts’ behavior by a parasite: field evidence for adaptive manipulation. Ecology 88:2839–2847PubMedCrossRefGoogle Scholar
  28. Le Cren ED (1951) The length–weight relationship and seasonal cycle in gonad weight and condition in perch (Perca fluviatilis). J Anim Ecol 20:201–219CrossRefGoogle Scholar
  29. Marcogliese DJ, Cone DK (1997) Food webs: a plea for parasites. Trends Ecol Evol 12:320–325PubMedCrossRefGoogle Scholar
  30. Maynard BJ, Wellnitz TA, Zanini N, Wright WG, Dezfuli BS (1998) Parasite-altered behavior in a crustacean intermediate host: field and laboratory studies. J Parasitol 84:1102–1106PubMedCrossRefGoogle Scholar
  31. McCahon CP, Maund SJ, Poulton MJ (1991) The effect of the acanthocephalan parasite (Pomphorhynchus laevis) on the drift of its intermediate host (Gammarus pulex). Freshwat Biol 25:507–513CrossRefGoogle Scholar
  32. Morand S, Robert F, Connors VA (1995) Complexity in parasite life cycles: population biology of cestodes in fish. J Anim Ecol 64:256–264CrossRefGoogle Scholar
  33. Parker GA, Ball MA, Chubb JC (2009) To grow or not to grow? Intermediate and paratenic hosts as helminth life cycle strategies. J Theor Biol 258:135–147PubMedCrossRefGoogle Scholar
  34. Perrot-Minnot MJ (2004) Larval morphology, genetic divergence, and contrasting levels of host manipulation between forms of Pomphorhynchus laevis (Acanthocephala). Int J Parasitol 34:45–54PubMedCrossRefGoogle Scholar
  35. Robert F, Renaud F, Mathieu E, Gabrion C (1988) Importance of the paratenic host in the biology of Bothriocephalus gregarius (Cestoda, Pseudophyllidea) a parasite of the turbot. Int J Parasitol 18:611–621PubMedCrossRefGoogle Scholar
  36. Rousset F, Thomas F, De Meeus T, Renaud F (1996) Inference of parasite-induced host mortality from distributions of parasite loads. Ecology 77:2203–2211CrossRefGoogle Scholar
  37. Schmidt GD (1985) Development and life cycles. In: Crompton DWT, Nickol BB (eds) Biology of the Acanthocephala. Cambridge University Press, Cambridge, pp 273–286Google Scholar
  38. Seppälä O, Jokela J (2008) Host manipulation as a parasite transmission strategy when manipulation is exploited by non-host predators. Biol Lett 4:663–666PubMedCrossRefGoogle Scholar
  39. Siddall R, Sures B (1998) Uptake of lead by Pomphorhynchus laevis cystacanths in Gammarus pulex and immature worms in chub (Leuciscus cephalus). Parasitol Res 84:573–577PubMedCrossRefGoogle Scholar
  40. Tain L, Perrot-Minnot M-J, Cézilly F (2006) Altered host behaviour and brain serotonergic activity caused by acanthocephalans: evidence for specificity. Proc R Soc Lond B 273:3039–3045CrossRefGoogle Scholar
  41. Thomas F, Renaud F, Rousset F, Cézilly F, De Meeûs T (1995) Differential mortality of two closely related host species induced by one parasite. Proc R Soc Lond B 260:349–352CrossRefGoogle Scholar
  42. Thomas F, Adamo S, Moore J (2005) Parasitic manipulation: where are we and where should we go? Behav Process 68:185–199CrossRefGoogle Scholar
  43. Wellnitz T, Giari L, Maynard B, Dezfuli BS (2003) A parasite spatially structures its host population. Oikos 100:263–268CrossRefGoogle Scholar
  44. Wheeler A (1978) I. melas and I. nebulosus: the North American catfishes in Europe. J Fish Biol 12:435–439CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Vincent Médoc
    • 1
    • 2
  • Thierry Rigaud
    • 1
  • Sébastien Motreuil
    • 1
  • Marie-Jeanne Perrot-Minnot
    • 1
  • Loïc Bollache
    • 1
  1. 1.UMR CNRS 5561 BiogéosciencesUniversité de BourgogneDijonFrance
  2. 2.UMR CNRS 7625 Ecologie et Evolution, USC INRA 2031 Ecologie des Populations et CommunautésUniversité Pierre et Marie CurieParisFrance

Personalised recommendations