Advertisement

Naturwissenschaften

, 98:763 | Cite as

Whole genome amplification and microsatellite genotyping of herbarium DNA revealed the identity of an ancient grapevine cultivar

  • Nenad MalenicaEmail author
  • Silvio Šimon
  • Višnja Besendorfer
  • Edi Maletić
  • Jasminka Karoglan Kontić
  • Ivan Pejić
Original Paper

Abstract

Reconstruction of the grapevine cultivation history has advanced tremendously during the last decade. Identification of grapevine cultivars by using microsatellite DNA markers has mostly become a routine. The parentage of several renowned grapevine cultivars, like Cabernet Sauvignon and Chardonnay, has been elucidated. However, the assembly of a complete grapevine genealogy is not yet possible because missing links might no longer be in cultivation or are even extinct. This problem could be overcome by analyzing ancient DNA from grapevine herbarium specimens and other historical remnants of once cultivated varieties. Here, we present the first successful genotyping of a grapevine herbarium specimen and the identification of the corresponding grapevine cultivar. Using a set of nine grapevine microsatellite markers, in combination with a whole genome amplification procedure, we found the 90-year-old Tribidrag herbarium specimen to display the same microsatellite profile as the popular American cultivar Zinfandel. This work, together with information from several historical documents, provides a new clue of Zinfandel cultivation in Croatia as early as the beginning of fifteenth century, under the native name Tribidrag. Moreover, it emphasizes substantial information potential of existing grapevine and other herbarium collections worldwide.

Keywords

SSR aDNA Vitis vinifera Tribidrag Zinfandel Herbarium 

Notes

Acknowledgments

This work was funded by the Croatian Ministry of Science under the project number 178-1781844-1925. The herbarium specimens were kindly provided by Mr. Nediljko Ževrnja, head of the Natural History Museum of Split. The archaeological specimen was kindly provided by Irena Radic Rossi, M.Sc., from the Department of Underwater Archaeology, Croatian Restoration Institute. We would like to thank Dr. Ivana Ivančić Baće for valuable comments on the manuscript.

Competing financial interest

The authors declare no competing financial interest.

References

  1. Bowers JE, Meredith CP (1997) The parentage of a classic wine grape, Cabernet Sauvignon. Nat Genet 16(1):84–87PubMedCrossRefGoogle Scholar
  2. Bowers JE, Bandman EB, Meredith CP (1993) DNA fingerprint characterization of some wine grape cultivars. Am J Enol Vitic 44(3):266–274Google Scholar
  3. Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 39:628–633PubMedCrossRefGoogle Scholar
  4. Bowers J, Boursiquot J-M, This P, Chu K, Johansson H, Meredith C (1999a) Historical genetics: the parentage of Chardonnay, Gamay, and other wine grapes of Northeastern France. Science 285(5433):1562–1565. doi: 10.1126/science.285.5433.1562 PubMedCrossRefGoogle Scholar
  5. Bowers JE, Dangl GS, Meredith CP (1999b) Development and characterization of additional microsatellite DNA markers for grape. Am J Enol Vitic 50(3):243–246Google Scholar
  6. Bulić S (1949) Dalmatinska ampelografija/Dalmatian Ampelography. Poljoprivredni nakladni zavod, Zagreb, CroatiaGoogle Scholar
  7. Cappellini E, Gilbert MT, Geuna F, Fiorentino G, Hall A, Thomas-Oates J, Ashton PD, Ashford DA, Arthur P et al (2010) A multidisciplinary study of archaeological grape seeds. Naturwissenschaften 97(2):205–217. doi: 10.1007/s00114-009-0629-3 PubMedCrossRefGoogle Scholar
  8. Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289(5482):1139PubMedCrossRefGoogle Scholar
  9. Drabkova L, Kirschner J, Vlcek C (2002) Comparison of seven DNA extraction and amplification protocols in histroical herbarium speciment of Juncaceae. Plant Mol Biol Rep 20:161–175CrossRefGoogle Scholar
  10. Gilbert MT, Bandelt HJ, Hofreiter M, Barnes I (2005) Assessing ancient DNA studies. Trends Ecol Evol 20(10):541–544PubMedCrossRefGoogle Scholar
  11. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W et al (2010) A draft sequence of the Neandertal genome. Science 328(5979):710–722. doi: 10.1126/science.1188021 PubMedCrossRefGoogle Scholar
  12. Heintl FR (1821) Weinbau des österreichischen Kaisertums. Wien/Winegrowing in the Austrian empire. ViennaGoogle Scholar
  13. Hummel S (2003) DNA markers. Ancient DNA typing. Springer, BerlinGoogle Scholar
  14. Jankowiak K, Buczkowska K, Szweykowska-Kulinska Z (2005) Successful extraction of DNA from 100-year-old herbarium specimens of the liverwort Bazzania trilobata. Taxon 54(2):335–336CrossRefGoogle Scholar
  15. Maletić E, Pejić I, Karlogan Kontic J, Piljac J, Dangl GS, Vokurka A, Lacombe T, Mirosević N, Meredith CP (2004) Zinfandel, Dobričić and Plavac mali: the genetic relationship among three cultivars of the Dalmatian coast of Croatia. Am J Enol Vitic 55(2):174–180Google Scholar
  16. Manen J-F, Bouby L, Dalnoki O, Marinval P, Turgay M, Schlumbaum A (2003) Microsatellites from archeological Vitis vinifera seeds allow a tentative assignment of the geographical origin of ancient cultivars. J Archaeol Sci 00:1–9Google Scholar
  17. Pelsy F (2010) Molecular and cellular mechanisms of diversity within grapevine varieties. Heredity 104(4):331–340. doi: 10.1038/hdy.2009.161 PubMedCrossRefGoogle Scholar
  18. Pratelli R, Lacombe B, Torregrosa L, Gaymard F, Romieu C, Thibaud J-B, Sentenac H (2002) A grapevine gene encoding a guard cell K(+) channel displays developmental regulation in the grapevine berry. Plant Physiol 128(2):564–577PubMedCrossRefGoogle Scholar
  19. Rogers SO, Bendich AJ (1985) Extraction of DNA from miligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76CrossRefGoogle Scholar
  20. Savolainen V, Cuénoud P, Spichiger R, Martinez MDP, Crèvecoeur M, Manen J-F (1995) The use of herbarium specimens in DNA phylogenetics: evaluation and improvement. Plant Syst Evol 197(1):87–98. doi: 10.1007/bf00984634 CrossRefGoogle Scholar
  21. Schlumbaum A, Tensen M, Jaenicke-Després V (2008) Ancient plant DNA in archaeobotany. Veg Hist Archaeobot 17(2):233–244. doi: 10.1007/s00334-007-0125-7 CrossRefGoogle Scholar
  22. Sefc KM, Regner F, Turetschek E, Glössl J, Steinkellner H (1999) Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42(3):367–373PubMedGoogle Scholar
  23. Sefc KM, Pejic I, Maletic E, Thomas MR, Lefort F (2009) Microsatellite markers for grapevine: tools for cultivar identification and pedigree reconstruction. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology and biotechnology. Springer Dordrecht Heidelberg London New York, pp 565–596CrossRefGoogle Scholar
  24. Sullivan CL (2003) Zinfandel: A history of a grape and its wine. University of California Press, BerkeleyGoogle Scholar
  25. Taylor JW, Swann EC (1994) DNA from herbarium specimens. In: Herrmann B, Hummel S (eds) Ancient DNA. Springer, Berlin, pp 167–181Google Scholar
  26. Telle S, Thines M (2008) Amplification of cox2 (approximately 620 bp) from 2 mg of up to 129 years old herbarium specimens, comparing 19 extraction methods and 15 polymerases. PLoS One 3(10):e3584. doi: 10.1371/journal.pone.0003584 PubMedCrossRefGoogle Scholar
  27. This P, Jung A, Boccacci P, Borrego J, Botta J, Costantini L (2004) Developmet of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109:1448–1458PubMedCrossRefGoogle Scholar
  28. This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22(9):511–519. doi: 10.1016/j.tig.2006.07.008 PubMedCrossRefGoogle Scholar
  29. Thomas MR, Scott NS (1993) Microsatellite repeats in the grapevine reveal DNA polymorphism when analyzed as sequence-tagged sites (STS). Theor Appl Genet 86:985–990Google Scholar
  30. Tudor A (2002) Plemić, pjesnik, težak. Zarez 4:85–86Google Scholar
  31. Tudor A (2010) Nekoliko povijesnih podataka o Tribidragu (Zinfandel, Crljenak kaštelanski, Tribidrag) Mogućnosti: književnost, umjetnost, kulturni problemi 1 (7–9):103–109Google Scholar
  32. Vouillamoz JF, Grando MS (2006) Genealogy of wine grape cultivars: “Pinot” is related to “Syrah”. Heredity 97(2):102–110. doi: 10.1038/sj.hdy.6800842 PubMedCrossRefGoogle Scholar
  33. Vouillamoz J, Schneider A, Grando M (2007) Microsatellite analysis of alpine grape cultivars (Vitis vinifera): alleged descendants of Pliny the Elder’s Raetica are genetically related. Genet Resour Crop Evol 54(5):1095–1104. doi: 10.1007/s10722-006-9001-z CrossRefGoogle Scholar
  34. Willerslev E, Cooper A (2005) Ancient DNA. Proc Biol Sci 272(1558):3–16. doi: 10.1098/rspb.2004.2813 PubMedCrossRefGoogle Scholar
  35. Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MT, Shapiro B, Bunce M, Wiuf C, Gilichinsky DA et al (2003) Diverse plant and animal genetic records from holocene and pleistocene sediments. Science 300(5620):791–795. doi: 10.1126/science.10841141084114 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Nenad Malenica
    • 1
    Email author
  • Silvio Šimon
    • 2
  • Višnja Besendorfer
    • 1
  • Edi Maletić
    • 3
  • Jasminka Karoglan Kontić
    • 3
  • Ivan Pejić
    • 2
  1. 1.Faculty of Science, Department of Molecular BiologyUniversity of ZagrebZagrebCroatia
  2. 2.Faculty of Agriculture, Department of Plant Breeding, Genetics and BiometricsUniversity of ZagrebZagrebCroatia
  3. 3.Faculty of Agriculture, Department of Viticulture and EnologyUniversity of ZagrebZagrebCroatia

Personalised recommendations