, Volume 98, Issue 6, pp 519–527 | Cite as

Computed tomography recovers data from historical amber: an example from huntsman spiders

  • Jason A. DunlopEmail author
  • David Penney
  • Natalie Dalüge
  • Peter Jäger
  • Andrew McNeil
  • Robert S. Bradley
  • Philip J. Withers
  • Richard F. Preziosi
Original Paper


Computed tomography (CT) methods were applied to a problematic fossil spider (Arachnida: Araneae) from the historical Berendt collection of Eocene (ca. 44–49 Ma) Baltic amber. The original specimens of Ocypete crassipes Koch and Berendt 1854 are in dark, oxidised amber and the published descriptions lack detail. Despite this, they were subsequently assigned to the living Pantropical genus Heteropoda Latreille, 1804 and are ostensibly the oldest records of huntsman spiders (Sparassidae) in general. Given their normally large size, and presumptive ability to free themselves more easily from resin, it would be surprising to find a sparassid in amber and traditional (optical) methods of study would likely have left O. crassipes as an equivocal record—probably a nomen dubium. However, phase contrast enhanced X-ray CT revealed exquisite morphological detail and thus ‘saved’ this historical name by revealing characters which confirm that it's a bona fide member both of Sparassidae and the subfamily Eusparassinae. We demonstrate here that CT studies facilitate taxonomic equivalence even between recent spiders and unpromising fossils described in older monographs. In our case, fine structural details such as eye arrangement, cheliceral dentition, and leg characters like a trilobate membrane, spination and claws, allow a precise referral of this fossil to an extant genus as Eusparassus crassipes (Koch and Berendt 1854) comb. nov.


Fossil Eocene Baltic amber Araneae Sparassidae 



We thank Christian Neumann (MfN, Berlin) for access to material in his care, Paul Selden (Kansas) for providing Chinese literature and the reviewers for helpful remarks.

Supplementary material

114_2011_796_MOESM1_ESM.mpg (64.4 mb)
Supplementary 1 (64.3 MB)


  1. Berendt GC (1845) Die im Bernstein befindlichen organischen Reste der Vorwelt, gesammelt, in Verbindung mit Mehren bearbeitet und herausgegeben. N Jb Min Geog Geol Petrefaktknd 1845:864–879Google Scholar
  2. Bonnet P (1958) Bibliographia Araneorum. Tome II (4me partie N–S). Douladoure, Toulouse, pp 3027–4230Google Scholar
  3. Bosselaers J, Dierick M, Cnudde V, Masschaele B, Vlassenbroeck J, van Hoorebeke L, Jacobs P (2010) High-resolution X ray computed tomography of an extant new Donuea (Araneae: Liocranidae) species in Madagascan copal. Zootaxa 2427:25–35Google Scholar
  4. Dabert M, Witalinski W, Kazmierski A, Olszanowski Z, Dabert J (2010) Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol Phylogenet Evol 56:222–241PubMedCrossRefGoogle Scholar
  5. Dunlop JA, Penney D, Tetlie OE, Anderson LI (2008) How many species of fossil arachnids are there? J Arachnol 36:267–272CrossRefGoogle Scholar
  6. Dunlop JA, Penney D, Jekel D (2011) A summary list of fossil spiders and their relatives. In: Platnick, NI (ed) The world spider catalog, version 11.5. American Museum of Natural History. Available at doi: 10.5531/db.iz.0001
  7. Giebel CG (1856) Die Insekten und Spinnen der Vorwelt mit steter Berücksichtigung der lebenden Insekten und Spinnen; monographisch dargestellt. Leipzig, p 511Google Scholar
  8. Giribet G, Vogt L, Pérez González A, Sharma P, Kury AB (2009) A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. Cladistics 25:1–30CrossRefGoogle Scholar
  9. Heethoff M, Helfen L, Norton RA (2009) Description of Neoliodes dominics n. sp. (Acari, Oribatida) from Dominican amber, aided by synchrotron X-ray microtomography. J Paleontol 83:153–159CrossRefGoogle Scholar
  10. Henderickx H, Cnudde V, Masschaele B, Dierick M, Vlassenbroeck J, van Hoorebeke L (2006) Description of a new fossil Pseudogarypus (Pseudoscorpiones: Pseudogarypidae) with the use of X-ray micro CT to penetrate opaque amber. Zootaxa 1623:47–53Google Scholar
  11. Hoffeins C (2008) Animal and plant inclusions in the collection of Otto Helm (1826–1902), Gdańsk. Bursztyinsko 31:36–43Google Scholar
  12. Hong Y-c (1985) Fossil insects, scorpionids and araneids in the diatoms of Shanwang. Geological Publishing House, Beijing, p 80Google Scholar
  13. Jäger P (1998) First results of a taxonomic revision of the SE Asian Sparassidae (Araneae). pp 53–59. In: Selden PA (ed) Proceedings of the 17th European Colloquium of Arachnology, Edinburgh, 1997. p 350. British Arach. Soc., Burnham Beeches, BucksGoogle Scholar
  14. Jäger P (1999) Sparassidae—the valid scientific name for the huntsman spider (Arachnida: Araneae). Arachnol Mitt 17:1–10Google Scholar
  15. Jäger P (2001) Diversität der Riesenkrabbenspinnen im Himalaya – die Radiation zweier Gattungen in den Schneetropen (Araneae: Sparassidae: Heteropodinae). Cour Forsch-Inst Senckenberg 232:1–136Google Scholar
  16. Jäger P (2002) Heteropodinae: transfers and synonymies (Arachnida: Araneae: Sparassidae). Acta Arachnol 51:33–61CrossRefGoogle Scholar
  17. Jäger P (2004) A study of the character ‘palpal claw’ in the spider subfamily Heteropodinae (Araneae: Sparassidae). pp 107–125.In: Logunov DV, Penney D (eds) Proceedings of the 21st European Colloquium of Arachnology, St.-Petersburg, 4–9 August 2003. p 374. KMK Scientific Press, MoscowGoogle Scholar
  18. Jäger P (2008) Revision of the huntsman spider genus Heteropoda Latreille 1804: species with exceptional male palpal conformations (Araneae: Sparassidae: Heteropodinae). Senckenberg biol 88:239–310Google Scholar
  19. Jäger P, Kunz D (2005) An illustrated key to genera of African huntsman spiders (Araneae: Sparassidae). Senckenberg biol 85:163–213Google Scholar
  20. Jäger P, Ono H (2000) Sparassidae of Japan. I. New species of Olios, Heteropoda and Sinopoda with remarks on known species (Arachnida: Araneae). Acta Arachnol 49:41–60CrossRefGoogle Scholar
  21. Jäger P, Otto S (2007) New records of Olios sericeus (Kroneberg 1875) with notes on its taxonomy and biogeography (Araneae: Sparassidae: Sparassinae). Rev Ibér Arachnol 14:19–24Google Scholar
  22. Jäger P, Rheims CA, Labarque FM (2009) On the genera Sparianthina Banks 1929 and Anaptomecus Simon 1903 from South and Central America (Araneae: Sparassidae). Zookeys 16:115–147Google Scholar
  23. Keilbach R (1982) Bibliographie und Liste der Arten tierische Einschlüsse in fossilen Harzen sowie ihrer Aufbewahrungsorte. Teil 1 Dt Ent Z (NF) 29:129–286Google Scholar
  24. Koch CL, Berendt GC (1854) Die im Bernstein befindlichen Crustaceen, Myriapoden, Arachniden und Apteren der Vorwelt. In: Berendt GC (ed) Die im Bernstein befindlichen organischen Reste der Vorwelt, vol 1, part II. Nicholai, Berlin, p i–iv + 1–124Google Scholar
  25. Lin Q-b, Zhang Z-f, Wang B-z (1989) New evidences for Miocene climatic optimum event—review on the Miocene spider fossils from Shanwang collection. Proceedings of International Symposium on Pacific Neogene and Marine Events. Nanjing University Press, pp 137–147Google Scholar
  26. McNeil A, Bradley RS, Withers PJ, Penney D (2010) Developments in X-ray tomography VII In: Stock SR (ed) Proc. SPIE, San Diego, vol 7804, pp 78041Q-1Google Scholar
  27. Menge A (1854) Footnotes. In: Koch CL, Berendt GC Die im Bernstein befindlichen Crustaceen, Myriapoden, Arachniden und Apteren der Vorwelt. In: Berendt GC (ed) Die im Bernstein befindlichen organischen Reste der Vorwelt. Vol. 1, part II. Nicholai, Berlin, p i–iv + 1–124Google Scholar
  28. Penney D (2010a) The evolution of jumping spiders (Araneae: Salticidae): the palaeontological evidence. Peckhamia 81(1):1–3Google Scholar
  29. Penney D (ed) (2010b) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, p 304Google Scholar
  30. Penney D, Selden PA (2011) Fossil spiders: the evolutionary history of a mega-diverse order. Monograph Series, vol 1. Siri Scientific Press, Manchester, p 128Google Scholar
  31. Penney D, Dierick M, Cnudde V, Masschaele B, Vlassenbroeck J, van Hoorebeke L, Jacobs P (2007) First fossil Micropholcommatidae (Araneae), imaged in Eocene Paris amber using X-Ray computed tomography. Zootaxa 1623:47–53Google Scholar
  32. Penney D, Green DI, McNeil A, Bradley R, Marusik YM, Withers PJ, Preziosi RF (2011) A new species of anapid spider (Arthropoda: Araneae, Anapidae) in Eocene Baltic amber, imaged using X-ray computed tomography. Zootaxa 2742:61–68Google Scholar
  33. Petrunkevitch AI (1942) A study of amber spiders. Trans Conn Acad Arts Sci 34:119–464Google Scholar
  34. Petrunkevitch AI (1958) Amber spiders in European collections. Trans Conn Acad Arts Sci 41:97–400Google Scholar
  35. Platnick NI (2011) The world spider catalog, version 11.5. American Museum of Natural History. Available at doi: 10.5531/db.iz.0001
  36. Pohl H, Wipfler B, Grimaldi D, Beckmann F, Beutel RG (2010) Reconstructing the anatomy of the 42 million-year-old fossil †Mengea tertiara (Insecta, Strepsiptera). Naturwiss 97:855–859PubMedCrossRefGoogle Scholar
  37. Ritzkowski S (1997) K-Ar-Altersbestimmungen der bernsteinfuehrenden Sedimente des Samlandes (Palaeogen), Bezirk Kaliningrad. Metalla Sond 66:19–23Google Scholar
  38. Saupe EE, Selden PA (2011) The study of fossil spider species. C R Palevol 10:181–188Google Scholar
  39. Scudder SH (1891) Index to the known fossil insects of the world including myriapods and arachnids. Bull US Geol Surv 71:1–744Google Scholar
  40. Selden P, Penney D (2010) Fossil spiders. Biol Rev 85:171–206PubMedCrossRefGoogle Scholar
  41. Weitschat W, Wichard W (2010) Baltic amber. In: Penney D (ed) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, pp 80–115Google Scholar
  42. Wolfe AP, Tappert R, Muehlenbachs K, Boudreau M, McKellar RC, Basinger JF, Garret A (2009) A new proposal concerning the botanical origin of Baltic amber. Proc R Soc B 276:3403–3412PubMedCrossRefGoogle Scholar
  43. Wunderlich J (1988) Die fossilen Spinnen im dominikanischen Bernstein. Beitr Araneol 2:1–378Google Scholar
  44. Wunderlich J (2004) Fossil spiders (Araneae) of the family Sparassidae in Baltic and Dominican amber. Beitr Araneol 3:1694–1698Google Scholar
  45. Wunderlich J (2008) On extant and fossil members of the RTA-clade in Eocene European ambers of the families Borboropactidae, Corinnidae, Selenopidae, Sparassidae, Trochanteriidae, Zoridae s. l., and of the superfamily Lycosoidea. Beitr Araneol 5:470–523Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jason A. Dunlop
    • 1
    Email author
  • David Penney
    • 2
  • Natalie Dalüge
    • 3
  • Peter Jäger
    • 4
  • Andrew McNeil
    • 5
  • Robert S. Bradley
    • 5
  • Philip J. Withers
    • 5
  • Richard F. Preziosi
    • 2
  1. 1.Museum für NaturkundeLeibniz Institute for Research on Evolution and Biodiversity at the Humboldt University BerlinBerlinGermany
  2. 2.Faculty of Life SciencesUniversity of ManchesterManchesterUK
  3. 3.Zoologisches Institut und MuseumHamburgGermany
  4. 4.Senckenberg Research InstituteFrankfurt am MainGermany
  5. 5.Henry Moseley X-ray Imaging Facility, School of MaterialsUniversity of ManchesterManchesterUK

Personalised recommendations