, Volume 98, Issue 4, pp 253–279 | Cite as

Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond

  • Francesco CanganellaEmail author
  • Juergen Wiegel


The anthropocentric term “extremophile” was introduced more than 30 years ago to describe any organism capable of living and growing under extreme conditions—i.e., particularly hostile to human and to the majority of the known microorganisms as far as temperature, pH, and salinity parameters are concerned. With the further development of studies on microbial ecology and taxonomy, more “extreme” environments were found and more extremophiles were described. Today, many different extremophiles have been isolated from habitats characterized by hydrostatic pressure, aridity, radiations, elevated temperatures, extreme pH values, high salt concentrations, and high solvent/metal concentrations, and it is well documented that these microorganisms are capable of thriving under extreme conditions better than any other organism living on Earth. Extremophiles have also been investigated as far as the search for life in other planets is concerned and even to evaluate the hypothesis that life on Earth came originally from space. Extremophiles are interesting for basic and applied sciences. Particularly fascinating are their structural and physiological features allowing them to stand extremely selective environmental conditions. These properties are often due to specific biomolecules (DNA, lipids, enzymes, osmolites, etc.) that have been studied for years as novel sources for biotechnological applications. In some cases (DNA polymerase, thermostable enzymes), the search was successful and the final application was achieved, but certainly further exploitations are next to come.


Extremophilic microorganisms Extreme environments Taxonomy Physiology Application 


  1. Abe F, Kat C, Horikoshi K (1999) Pressure-regulated metabolism in microorganisms. Trends Microbiol 7:447–453PubMedCrossRefGoogle Scholar
  2. Adams MWW (1999) The biochemical diversity of life near and above 100 °C in marine environments. J Appl Microbiol 85:108S–117SCrossRefGoogle Scholar
  3. Aguilar A (1996) Extremophile research in the European Union: from fundamental aspects to industrial expectations. FEMS Microbiol Rev 18:89–92CrossRefGoogle Scholar
  4. Aguilar A, Ingemansson T, Magniea E (1998) Extremophile microorganisms as cell factories: support from the European Union. Extremophiles 2:367–373PubMedCrossRefGoogle Scholar
  5. Alain K, Callac N, Guégan M, Lesongeur F, Crassous P, Cambon-Bonavita MA, Querellou J, Prieur D (2009) Nautilia abyssi sp. nov., a thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 59:1310–1315PubMedCrossRefGoogle Scholar
  6. Alajtal AI, Edwards HG, Scowen IJ (2009) Raman spectroscopic analysis of minerals and organic molecules of relevance to astrobiology. Anal Bioanal Chem 297(1):215–221Google Scholar
  7. Alimenti C, Vallesi A, Pedrini B, Wüthrich K, Luporini P (2009) Molecular cold-adaptation: comparative analysis of two homologous families of psychrophilic and mesophilic signal proteins of the protozoan ciliate, Euplotes. IUBMB Life 61:838–845PubMedCrossRefGoogle Scholar
  8. Anton J, Rossello-Mora R, Rodrigues-Valera F, Amman R (2000) Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057PubMedCrossRefGoogle Scholar
  9. Antranikian G, Vorgias CE, Bertoldo C (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. Adv Biochem Eng Biotechnol 96:219–262PubMedGoogle Scholar
  10. Antunes A, Rainey FA, Wanner G, Taborda M, Patzold J, Nobre MF, Da Costa MS, Huber R (2008) A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep of the Red Sea. J Bacteriol 190:3580–3587PubMedCrossRefGoogle Scholar
  11. Aono R, Kobayashi H (1997) Cell surface properties of organic solvent-tolerant mutants of Escherichia coli K-12. Appl Environ Microbiol 63:3637–3642PubMedGoogle Scholar
  12. Arahal DR, Ventosa A (2006) The family Halomonadaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) Prokaryotes. Springer, New York, pp 811–835CrossRefGoogle Scholar
  13. Arahal DR, Marquez MC, Volcani BE, Schleifer KH, Ventosa A (1999) Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea. Int J Syst Bacteriol 49:521–530PubMedCrossRefGoogle Scholar
  14. Arahal DR, Gutierrez MC, Volcani BE, Ventosa A (2000) Taxonomic analysis of extremely halophilic archaea isolated from 56-years-old Dead Sea brine samples. Syst Appl Microbiol 23:376–385PubMedGoogle Scholar
  15. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ, Oren A, Bejar V, Quesada E, Ventosa A (2007) Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 57:2436–2446PubMedCrossRefGoogle Scholar
  16. Arun AB, Chen WM, Lai WA, Chou JH, Shen FT, Rekha PD, Young CC (2009) Lutaonella thermophila gen. nov., sp. nov., a moderately thermophilic member of the family Flavobacteriaceae isolated from a coastal hot spring. Int J Syst Evol Microbiol 8:2069–2073CrossRefGoogle Scholar
  17. Asha Poorna C, Prema P (2007) Production of cellulase-free endoxylanase from novel alkalophilic thermotolerent Bacillus pumilus by solid-state fermentation and its application in wastepaper recycling. Bioresour Technol 98:485–490PubMedCrossRefGoogle Scholar
  18. Aubert S, Juge C, Boisson AM, Gout E, Bligny R (2007) Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environments. Planta 226:1287–1297PubMedCrossRefGoogle Scholar
  19. Averhoff B, Müller V (2010) Exploring research frontiers in microbiology: recent advances in halophilic and thermophilic extremophiles. Res Microbiol 161:506–514PubMedCrossRefGoogle Scholar
  20. Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171PubMedCrossRefGoogle Scholar
  21. Bakermans C, Sloup RE, Zarka DG, Tiedje JM, Thomashow MF (2009) Development and use of genetic system to identify genes required for efficient low-temperature growth of Psychrobacter arcticus 273-4. Extremophiles 13:21–30PubMedCrossRefGoogle Scholar
  22. Basu S, Sen S (2009) Turning a mesophilic protein into a thermophilic one: a computational approach based on 3D structural features. J Chem Inf Model 49:1741–1750PubMedCrossRefGoogle Scholar
  23. Bathe S, Norris PR (2007) Ferrous iron- and sulfur-induced genes in Sulfolobus metallicus. Appl Environ Microbiol 73:2491–2497PubMedCrossRefGoogle Scholar
  24. Battista JR (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51:203–224PubMedCrossRefGoogle Scholar
  25. Baumer S, Ide T, Jacobi C, Johann A, Gottschalk G, Deppenmeier U (2000) The F420H2 dehydrogenase from Methanosarcina mazei is a redox-driven proton pump closely related to NADH dehydrogenase. J Biol Chem 275:17968–17973PubMedCrossRefGoogle Scholar
  26. Beblo K, Rabbow E, Rachel R, Huber H, Rettberg P (2009) Tolerance of thermophilic and hyperthermophilic microorganisms to desiccation. Extremophiles 13:521–531PubMedCrossRefGoogle Scholar
  27. Billi D, Friedmann EI, Hofer KG, Caiola MG, Ocampo-Friedmann R (2000) Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl Environ Microbiol 66:1489–1492PubMedCrossRefGoogle Scholar
  28. Billi D, Friedmann EI, Helm RF, Potts M (2001) Gene transfer to the desiccation-tolerant cyanobacterium Chroococcidiopsis. J Bacteriol 183:2298–2305PubMedCrossRefGoogle Scholar
  29. Bond PL, Smriga SP, Banfield JF (2000) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66:3842–3849PubMedCrossRefGoogle Scholar
  30. Booth IR (1985) The regulation of intracellular pH in bacteria. Novartis Found Symp 221:19–28Google Scholar
  31. Bornscheuer UT, Bessler C, Srinivas R, Krishna SH (2002) Optimizing lipases and related enzymes for efficient application. Trends Biotechnol 20:433–437PubMedCrossRefGoogle Scholar
  32. Bowers KJ, Mesbah NM, Wiegel J (2009) Biodiversity of poly-extremophilic bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Systems 23(5):9CrossRefGoogle Scholar
  33. Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078PubMedGoogle Scholar
  34. Bowman JP, McCammom SA, Brown JL, McMeekin TA (1998) Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Bacteriol 48:1213–1222CrossRefGoogle Scholar
  35. Branciamore S, Gallori E, Di Giulio M (2008) The basal phylogenetic position of Nanoarchaeum equitans (Nanoarchaeota). Front Biosci 1:6886–6892CrossRefGoogle Scholar
  36. Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer-Verlag, New YorkGoogle Scholar
  37. Bruns A, Berthe-Corti L (2000) Fundibacter jadensis gen. nov., sp. nov., a new slightly halophilic bacterium, isolated from intertidal sediment. Int J Syst Bacteriol 49:441–448CrossRefGoogle Scholar
  38. Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris H (1998) Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc Royal Soc London-Biol Sci 265:1461–1465CrossRefGoogle Scholar
  39. Buck DP, Smith GD (1995) Evidence for a Na+/H+ electrogenic antiporter in an alkaliphilic cyanobacterium Synechocystis. FEMS Microbiol Lett 128:315–320Google Scholar
  40. Burghardt T, Junglas B, Siedler F, Wirth R, Huber H, Rachel R (2009) The interaction of Nanoarchaeum equitans with Ignicoccus hospitalis: proteins in the contact site between two cells. Biochem Soc Trans 37:127–132PubMedCrossRefGoogle Scholar
  41. Bustard MT, Burgess JG, Meeyoo V, Wright PC (2000) Novel opportunities for marine hyperthermophiles in emerging biotechnology and engineering industries. J Chem Technol Biotechnol 75:1095–1109CrossRefGoogle Scholar
  42. Cai M, Tang SK, Chen YG, Li Y, Zhang YQ, Li WJ (2009) Streptomonospora amylolytica sp. nov. and Streptomonospora flavalba sp. nov., halophilic actinomycetes isolated from a salt lake. Int J Syst Evol Microbiol 59:2471–2475PubMedCrossRefGoogle Scholar
  43. Canganella F, Wiegel J (1993) The potential of thermophilic clostridia in biotechnology. In: Woods DR (ed) The clostridia and biotechnology. Butterworths, Stoneham, pp 391–429Google Scholar
  44. Canganella F, Vettraino AM, Trovatelli LD (1995) The extremophilic bacteria—ecology and agroindustrial applications. Ann Microbiol Enzymol 45:173–184Google Scholar
  45. Canovas D, Vargas C, Csonka LN, Ventosa A, Nieto JJ (1996) Osmoprotectants in Halomonas elongata: high-affinity betaine transport system and choline–betaine pathway. J Bacteriol 178:7221–7226PubMedGoogle Scholar
  46. Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149PubMedCrossRefGoogle Scholar
  47. Cardenas E, Wu WM, Leigh MB, Carley J, Carroll S, Gentry T, Luo J, Watson D, Gu B, Ginder-Vogel M, Kitanidis PK, Jardine PM, Zhou J, Criddle CS, Marsh TL, Tiedje JM (2010) Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach. Appl Environ Microbiol 76:6778–6786PubMedCrossRefGoogle Scholar
  48. Castro JM, Moore JN (2000) Pit lakes: their characteristics and the potential for their remediation. Environ Geol 39:1254–1260CrossRefGoogle Scholar
  49. Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–342PubMedCrossRefGoogle Scholar
  50. Cavicchioli R, Thomas T (2000) Extremophiles in: encyclopedia of microbiology vol 2, 2nd edn. Academic, London, pp 317–337Google Scholar
  51. Chaturvedi P, Prabahar V, Manorama R, Pindi PK, Bhadra B, Begum Z, Shivaji S (2008) Exiguobacterium soli sp. nov., a psychrophilic bacterium from the McMurdo Dry Valleys, Antarctica. Int J Syst Evol Microbiol 58:2447–2453PubMedCrossRefGoogle Scholar
  52. Chen YG, Tang SK, Zhang YQ, Liu ZX, Chen QH, He JW, Cui XL, Li WJ (2010) Zhihengliuellasalsuginis sp. nov., a moderately halophilic actinobacterium from a subterranean brine. Extremophiles 14:397–402PubMedCrossRefGoogle Scholar
  53. Chiuri R, Maiorano G, Rizzello A, Del Mercato LL, Cingolani R, Rinaldi R, Maffia M, Pompa PP (2009) Exploring local flexibility/rigidity in psychrophilic and mesophilic carbonic anhydrases. Biophys J 96:1586–1596PubMedCrossRefGoogle Scholar
  54. Cockell CS (1999) Life on Venus. Planet Space Sci 47:1487–1501CrossRefGoogle Scholar
  55. Cockell CS, Lee P, Osinski G, Horneck G, Broady P (2002) Impact-induced microbial endolithic habitats. Meteor Planet Sci 37:1287–1298CrossRefGoogle Scholar
  56. Connaris H, West SM, Hough DW, Danson MJ (1998) Cloning and expression in Escherichia coli of the gene encoding citrate synthase from the hyperthermophilic Archaeon Sulfolobus solfataricus. Extremophiles 2:61–68PubMedCrossRefGoogle Scholar
  57. Conrad R, Seiler W (1982) Utilization of traces of carbon monoxide by aerobic oligotrophic microorganisms in ocean, lake and soil. Arch Microbiol 132:41–46CrossRefGoogle Scholar
  58. Cotugno R, Rosaria Ruocco M, Marco S, Falasca P, Evangelista G, Raimo G, Chambery A, Di Maro A, Masullo M, De Vendittis E (2009) Differential cold-adaptation among protein components of the thioredoxin system in the psychrophilic eubacterium Pseudoalteromonas haloplanktis TAC 125. Mol Biosyst 5:519–528PubMedCrossRefGoogle Scholar
  59. Daniel RM (1996) The upper limits of enzyme thermostability. Enzyme Microb Technol 19:74–79CrossRefGoogle Scholar
  60. Danson MJ, Hough DW (1997) The structural basis of protein halophilicity. Comp Biochem Physiol A Physiol 117:307–312CrossRefGoogle Scholar
  61. Das T, Ayyappan S, Chaudhury GR (1999) Factors affecting bioleaching kinetics of sulfide ores using acidophilic micro-organisms. Biometals 12:1–10CrossRefGoogle Scholar
  62. Delong EF, Franks DG, Yayanos AA (1997) Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105–2108PubMedGoogle Scholar
  63. Deppenmeier U, Mülle V, Gottschalk G (1996) Pathways of energy conservation in methanogenic archaea. Arch Microbiol 165:149–163CrossRefGoogle Scholar
  64. Deppenmeier U, Lienard T, Gottschalk G (1999) Novel reactions involved in energy conservation by methanogenic archaea. FEBS Lett 457:291–297PubMedCrossRefGoogle Scholar
  65. Deutch CE (1994) Characterization of a novel salt-tolerant Bacillus sp. from the nasal cavities of desert iguanas. FEMS Microbiol Lett 121:55–60CrossRefGoogle Scholar
  66. Dopson M (2011) Ecology, adaptations, and applications of acidophiles. In: Anitori R (ed) Extremophiles: microbiology and biotechnology. Horizon press (in press)Google Scholar
  67. Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL (2004) Characterization of Ferroplasma Isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70:2079–2088PubMedCrossRefGoogle Scholar
  68. Doronina NV, Trotsenko YA, Tourova TP (2000) Methylarcula marina gen. nov., sp. nov. and Methylarcula terricola sp. nov.: novel aerobic, moderately halophilic, facultatively methylotrophic bacteria from coastal saline environments. Int J Syst Evol Microbiol 50:1849–1859PubMedGoogle Scholar
  69. Drees KP, Neilson JW, Betancourt JL, Quade J, Henderson DA, Pryor BM, Maier RM (2006) Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Appl Environ Microbiol 72:7902–7908PubMedCrossRefGoogle Scholar
  70. Duckworth AW, Grant WD, Jones BE, Van Steenbergen R (1996) Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191CrossRefGoogle Scholar
  71. Eddy ML, Jablonski PE (2000) Purification and characterization of a membrane-associated ATPase from Natronococcus occultus, a haloalkaliphilic archaeon. FEMS Microbiol Lett 189:211–214PubMedCrossRefGoogle Scholar
  72. Edwards HGM (2004) Raman spectroscopic protocol for the molecular recognition of key biomarkers in astrobiological exploration. Orig Life Evol Biosph 34:3–11PubMedCrossRefGoogle Scholar
  73. Edwards HG, Vandenabeele P, Jorge-Villar SE, Carter EA, Perez FR, Hargreaves MD (2007) The Rio Tinto Mars analogue site: an extremophilic Raman spectroscopic study. Spectrochim Acta A Mol Biomol Spectrosc 68:1133–1137PubMedCrossRefGoogle Scholar
  74. Eisenberg H (1995) Life in unusual environments: progress in understanding the structure and function of enzymes from extreme halophilic bacteria. Arch Biochem Biophys 318:1–5PubMedCrossRefGoogle Scholar
  75. Empadinhas N, Da Costa MS (2008) Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Internat Microbiology 11:151–161Google Scholar
  76. Evangelista G, Falasca P, Ruggiero I, Masullo M, Raimo G (2009) Molecular and functional characterization of polynucleotide phosphorylase from the Antarctic eubacterium Pseudoalteromonas haloplanktis. Protein Pept Lett 16:999–1005PubMedCrossRefGoogle Scholar
  77. Fajardo-Cavazos P, Nicholson WL (2000) The TRAP-like SplA protein is a trans-acting negative regulator of spore photoproduct lyase synthesis during Bacillus subtilis sporulation. J Bacteriol 182:555–560PubMedCrossRefGoogle Scholar
  78. Fang J, Barcelona MJ, Nogi Y, Kato C (2000) Biochemical implications and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Marianas Trench at 11,000 m. Deep Sea Res I Oceanogr Res Pap 47:1173–1182CrossRefGoogle Scholar
  79. Fardeau ML, Barsotti V, Cayol JL, Guasco S, Michotey V, Joseph M, Bonin P, Ollivier B (2010) Caldinitratiruptor microaerophilus, gen. nov., sp. nov. isolated from a French hot spring (Chaudes-Aigues, Massif Central): a novel cultivated facultative microaerophilic anaerobic thermophile pertaining to the symbiobacterium branch within the Firmicutes. Extremophiles 14:241–247PubMedCrossRefGoogle Scholar
  80. Fegatella F, Cavicchioli R (2000) Physiological responses to starvation in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256. App Env Microbiol 66:2037–2044CrossRefGoogle Scholar
  81. Fendrihan S, Bérces A, Lammer H, Musso M, Rontó G, Polacsek TK, Holzinger A, Kolb C, Stan-Lotter H (2009) Investigating the effects of simulated Martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic archaebacteria. Astrobiology 9:104–112PubMedCrossRefGoogle Scholar
  82. Francis AJ, Dodge CJ, Gillow JB, Papenguth HW (2000) Biotransformation of uranium compounds in high ionic strength brine by a halophilic bacterium under denitrifying conditions. Env Sci Tech 34:2311–2317CrossRefGoogle Scholar
  83. Friedman EI, Hua MS, Ocampo-Friedman R (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58:251–259Google Scholar
  84. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053PubMedCrossRefGoogle Scholar
  85. Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108CrossRefGoogle Scholar
  86. Garabito MJ, Arahal DR, Mellado E, Marquez MC, Ventosa A (1997) Bacillus salexigens sp. nov., a new moderately halophilic Bacillus species. Int J Syst Bacteriol 47:735–741PubMedCrossRefGoogle Scholar
  87. Gemmell RT, Knowles CJ (2000) Utilisation of aliphatic compounds by acidophilic heterotrophic bacteria. The potential for bioremediation of acidic wastewaters contaminated with toxic organic compounds and heavy metals. FEMS Microbiol Lett 192:85–190CrossRefGoogle Scholar
  88. Gerday C, Aittaleb M, Arpigny JL, Baise E, Chessa J-P, Garsoux G, Petrescu I, Feller G (1997) Psychrophilic enzymes: a thermodynamic challenge. Biochim et Biophys Acta-Protein Struc Mol Enzymol 1342:119–131CrossRefGoogle Scholar
  89. Golyshina OV, Pivovarova TA, Karavaido GI, Kondrat’eva TF, Moore ERB, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50:997–1006PubMedGoogle Scholar
  90. Gorbushina A (2003) Microcolonial fungi: survival potential of terrestrial vegetative structures. Astrobiology 3:543–554PubMedCrossRefGoogle Scholar
  91. Gorbushina A, Broughton WJ (2009) Microbiology of the atmosphere–rock interface: how biological interactions and physical stresses modulate a sophisticated microbial ecosystem. Annu Rev Microbiol 63:431–450PubMedCrossRefGoogle Scholar
  92. Grant WD (1988) Bacteria from alkaline, saline environments and their potential in biotechnology. J Chem Technol Biotech 42:291–294Google Scholar
  93. Grant WD, Mwatha WE, Jones BE (1990) Alkaliphiles: ecology, diversity and applications. FEMS Microbiol Rev 75:255–270CrossRefGoogle Scholar
  94. Guan TW, Tang SK, Wu JY, Zhi XY, Xu LH, Zhang LL, Li WJ (2009) Haloglycomyces albus gen. nov., sp. nov., a halophilic, filamentous actinomycete of the family Glycomycetaceae. Int J Syst Evol Microbiol 59:1297–1301PubMedCrossRefGoogle Scholar
  95. Gyure RA, Konopka A, Brooks A, Doemel W (1987) Algal and bacterial activities in acidic (pH 3) strip mine lakes. Appl Environ Microbiol 53:2069–2076PubMedGoogle Scholar
  96. Hayakawa J, Kondoh Y, Ishizuka M (2009) Cloning and characterization of flagellin genes and identification of flagellin glycosylation from thermophilic Bacillus species. Biosci Biotechnol Biochem 73:1450–1452PubMedCrossRefGoogle Scholar
  97. Heber U, Bilger W, Türk R, Lange OL (2009) Photoprotection of reaction centres in photosynthetic organisms: mechanisms of thermal energy dissipation in desiccated thalli of the lichen Lobaria pulmonaria. New Phytol 185:459–470PubMedCrossRefGoogle Scholar
  98. Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852PubMedGoogle Scholar
  99. Heise R, Müller V, Gottschalk G (1992) Acetogenesis and ATP synthesis in Acetobacterium woodii are coupled via a transmembrane primary sodium-ion gradient. FEMS Microbiol Lett 112:261–268CrossRefGoogle Scholar
  100. Hezayen FF, Rehm BHA, Eberhardt R, Steinbuchel A (2000) Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Appl Microbiol Biotechnol 54:319–325PubMedCrossRefGoogle Scholar
  101. Hirayama H, Takami H, Inoue A, Horikoshi K (1998) Isolation and characterization of toluene-sensitive mutants from Pseudomonas putida IH-2000. FEMS Microbiol Lett 169:219–225PubMedCrossRefGoogle Scholar
  102. Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199PubMedCrossRefGoogle Scholar
  103. Hong MR, Kim YS, Park CS, Lee JK, Kim YS, Oh DK (2009) Characterization of a recombinant beta-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus. J Biosci Bioeng 108:36–40PubMedCrossRefGoogle Scholar
  104. Horikoshi K (1971) Production of alkaline enzymes by alkalophilic microorganisms I. Alkaline protease produced by Bacillus no. 221. Agric Biol Chem 35:1407–1414Google Scholar
  105. Horikoshi K (1996) Alkaliphiles from an industrial point of view. FEMS Microbiol Rev 18:259–270Google Scholar
  106. Horikoshi K (1998) Introduction. In: Horikoshi K, Grant WD (eds) Extremophiles: microbial life in extreme environments. Wiley-Liss, New YorkGoogle Scholar
  107. Horneck G, Rettberg P, Reitz G, Wehner J, Eschweiler U, Strauch K, Panitz C, Starke V, Baumstark-Khan C (2001) Protection of bacterial spores in space, a contribution to the discussion on Panspermia. Orig Life Evol Biosph 31:527–547PubMedCrossRefGoogle Scholar
  108. Hou S, Makarova KS, Saw JH, Senin P, Ly BV, Zhou Z, Ren Y, Wang J, Galperin MY, Omelchenko MV, Wolf YI, Yutin N, Koonin EV, Stott MB, Mountain BW, Crowe MA, Smirnova AV, Dunfield PF, Feng L, Wang L, Alam M (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26–35PubMedCrossRefGoogle Scholar
  109. Hua X, Wang C, Zhao Y, Wang H, Huang L, Xu G, Li M, Wang Y, Tian B, Hua Y (2010) Both OB folds of single-stranded DNA-binding protein are essential for its ssDNA binding activity in Deinococcus radiodurans. Protein Pept Lett 17:1189–1197PubMedCrossRefGoogle Scholar
  110. Huber H, Stetter KO (1998) Hyperthermophiles and their possible potential in biotechnology. J Biotechnol 64:39–52CrossRefGoogle Scholar
  111. Huber R, Rossnagel P, Woese CR, Rachel R, Langworthy TA, Stetter KO (1996) Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen. nov., sp. nov. Syst Appl Microbiol 19:40–49PubMedGoogle Scholar
  112. Imhoff JF, Trüper HG (1977) Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch Microbiol 114:115–121CrossRefGoogle Scholar
  113. Imhoff JF, Hashwa F, Trüper HG (1978) Isolation of extremely halophilic phototrophic bacteria from the alkaline Wadi Natrun, Egypt. Arch Hydrobiol 84:381–388Google Scholar
  114. Inoue A, Horikoshi K (1989) A Pseudomonas thrives in high concentrations of toluene. Nature 338:264–266CrossRefGoogle Scholar
  115. Javaux EJ (2006) Extreme life on Earth—past, present and possibly beyond. Res Microbiol 157:37–48PubMedCrossRefGoogle Scholar
  116. Johnson DB (1995) Acidophilic microbial communities: candidates for bioremediation of acidic mine effluents. Int Biodeterior Biodegrad 35:41–58CrossRefGoogle Scholar
  117. Johnson DB (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27:307–317CrossRefGoogle Scholar
  118. Johnson DB (2001) Importance of microbial ecology in the development of new mineral technologies. Hydrometal 59:147–157CrossRefGoogle Scholar
  119. Johnson DB, Hallberg KB (2008) Carbon, iron and sulfur metabolism in acidophilic microorganisms. Adv Microb Physiol 54:201–255CrossRefGoogle Scholar
  120. Johnson DB, Rang L (1993) Effects of acidophilic protozoa on populations of metal-mobilising bacteria during the leaching of pyritic coal. J Gen Microbiol 139:1417–1423Google Scholar
  121. Johnson DB, Bacelar-Nicolau P, Okibe N, Thomas A, Hallberg KB (2009) Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. Int J Syst Evol Microbiol 59:1082–1089PubMedCrossRefGoogle Scholar
  122. Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200PubMedCrossRefGoogle Scholar
  123. Jonsson AV, Moen J, Palmqvist K (2008) Predicting lichen hydration using biophysical models. Oecologia 156:259–273PubMedCrossRefGoogle Scholar
  124. Joux F, Jeffrey WH, Lebaron P, Mitchell DL (1999) Marine bacterial isolates display diverse responses to UV-B radiation. App Env Microbiol 65:3820–3827Google Scholar
  125. Jr McSween HY (2006) Water on Mars. Elements 2:135–136CrossRefGoogle Scholar
  126. Kaieda N, Wakagi T, Koyama N (1998) Presence of Na+-stimulated V-type ATPase in the membrane of a facultatively anaerobic and halophilic alkaliphile. FEMS Microbiol Lett 167:57–61PubMedCrossRefGoogle Scholar
  127. Kamekura M (1998) Diversity of extremely halophilic bacteria. Extremophiles 2:289–295PubMedCrossRefGoogle Scholar
  128. Kamekura M, Dyall-Smith ML, Upasan V, Ventosa A, Kates M (1997) Diversity of alkaliphilic halobacteria: proposals for the transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to the genus Halorubrum, Natrialba, and Natronomonas gen. nov., respectively as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. Int J Syst Bacteriol 47:853–857PubMedCrossRefGoogle Scholar
  129. Kämpfer P, Rainey FA, Andersson MA, Lassila E-LN, Ulrych U, Busse J-J, Weiss N, Mikkola R, Salkinoja-Salonen M (2000) Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae. Int J Syst Evol Microbiol 50:355–363PubMedGoogle Scholar
  130. Kargi F, Dincer AR (1998) Saline wastewater treatment by halophile-supplemented activated sludge culture in an aerated rotating biodisc contactor. Enz Microbial Tech 22:427–433CrossRefGoogle Scholar
  131. Kargi F, Dincer AR (2000) Use of halophilic bacteria in biological treatment of saline wastewater by fed-batch operation. Water Environ Res 72:170–174CrossRefGoogle Scholar
  132. Kaszycki P, Czechowska K, Petryszak P, Miedzobrodzki J, Pawlik B, Kołoczek H (2006) Methylotrophic extremophilic yeast Trichosporon sp.: a soil-derived isolate with potential applications in environmental biotechnology. Acta Biochim Pol 53:463–473PubMedGoogle Scholar
  133. Kato C, Inoue A, Horikoshi K (1996a) Isolating and characterizing deep-sea marine microorganisms. Trends Biotech 14:6–12CrossRefGoogle Scholar
  134. Kato C, Masui N, Horikoshi K (1996b) Properties of obligately barophilic bacteria isolated from a sample of deep-sea sediment from the Izu-Bonin trench. J Mar Biotechnol 4:96–99Google Scholar
  135. Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Marianas Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64:1510–1513PubMedGoogle Scholar
  136. Khelifi N, Ben Romdhane E, Hedi A, Postec A, Fardeau ML, Hamdi M, Tholozan JL, Ollivier B, Hirschler-Réa A (2010) Characterization of Microaerobacter geothermalis gen. nov., sp. nov., a novel microaerophilic, nitrate- and nitrite-reducing thermophilic bacterium isolated from a terrestrial hot spring in Tunisia. Extremophiles 14:297–304PubMedCrossRefGoogle Scholar
  137. Khmelenina VN, Kalyuzhnaya MG, Sakharovsky VG, Suzina NE, Trotsenko YA, Gottschalk G (1999) Osmoadaptation in halophilic and alkaliphilic methanotrophs. Arch Microbiol 172:321–329PubMedCrossRefGoogle Scholar
  138. Kieboom J, Dennis JJ, De Bont JAM, Zylstra GJ (1998) Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 273:85–91PubMedCrossRefGoogle Scholar
  139. Kim HJ, Park S, Lee JM, Park S, Jung W, Kang JS, Joo HM, Seo KW, Kang SH (2008) Moritella dasanensis sp. nov., a psychrophilic bacterium isolated from the Arctic ocean. Int J Syst Evol Microbiol 58:817–820PubMedCrossRefGoogle Scholar
  140. Kim CS, Pierre B, Ostermeier M, Looger LL, Kim JR (2009) Enzyme stabilization by domain insertion into a thermophilic protein. Protein Eng Des Sel 22:615–623PubMedCrossRefGoogle Scholar
  141. Knoblauch C, Sahm K, Jorgensen BB (1999) Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychropilia gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Bacteriol 49:1631–1643PubMedCrossRefGoogle Scholar
  142. Knowles EJ, Castenholz RW (2008) Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock-inhabiting phototrophic microorganisms. FEMS Microbiol Ecol 66:261–270PubMedCrossRefGoogle Scholar
  143. Kobayashi T, Kimura B, Fujii T (2000) Haloanaerobium fermentans sp. nov., a strictly anaerobic, fermentative halophile isolated from fermented puffer fish ovaries. Int J Syst Evol Microbiol 50:1621–1627PubMedGoogle Scholar
  144. Kotelnikova S, Pedersen K (1997) Evidence for methanogenic Archaea and homoacetogenic bacteria in deep granitic rock aquifers. FEMS Microbiol Rev 20:339–349CrossRefGoogle Scholar
  145. Koyama N (1999) Presence of Na+-stimulated P-type ATPase in the membrane of a facultatively anaerobic alkaliphile, Exiguobacterium aurantiacum. Curr Microbiol 39:27–30PubMedCrossRefGoogle Scholar
  146. Kristjansson JK (ed) (1992) Thermophilic bacteria. CRC, Boca RatonGoogle Scholar
  147. Krulwich TA (1986) Bioenergetics of alkalophilic bacteria. J Membr Biol 89:113–125PubMedCrossRefGoogle Scholar
  148. Krulwich TA, Guffanati AA (1989) Alkaliphilic bacteria. Ann Rev Microbiol 43:435–463CrossRefGoogle Scholar
  149. Krulwich TA, Ito M, Gilmour R, Sturr MG, Guffanti AA, Hicks DB (1996) Energetic problems of extremely alkaliphilic aerobes. Biochim Biophys Acta 1275:21–26PubMedCrossRefGoogle Scholar
  150. Kumar CG, Takagi H (1999) Microbial alkaline proteases: from a bioindustrial viewpoint. Biotech Adv 17:561–594CrossRefGoogle Scholar
  151. Kumar P, Islam A, Ahmad F, Satyanarayana T (2009) Characterization of a neutral and thermostable glucoamylase from the thermophilic mold Thermomucor indicae-seudaticae: activity, stability, and structural correlation. Appl Biochem Biotechnol 160:879–890PubMedCrossRefGoogle Scholar
  152. Kundu S, Roy D (2009) Comparative structural studies of psychrophilic and mesophilic protein homologues by molecular dynamics simulation. J Mol Graph Model 27:871–880PubMedCrossRefGoogle Scholar
  153. Larsen H (1962) Halophilism. In: Gunsalus IC, Stanier RY (eds) The bacteria. vol. 4. Academic, New York, pp 297–342Google Scholar
  154. Larson AD, Kallio RE (1954) Purification and properties of a bacterial urease. J Bacteriol 68:67–73PubMedCrossRefGoogle Scholar
  155. Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, Rice S, DeMaere MZ, Ting L, Ertan H, Johnson J, Ferriera S, Lapidus A, Anderson I, Kyrpides N, Munk AC, Detter C, Han CS, Brown MV, Robb FT, Kjelleberg S, Cavicchioli R (2009) The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci USA 106:15527–15533PubMedCrossRefGoogle Scholar
  156. Lawson PA, Deutch CE, Collins MD (1996) Phylogenetic characterization of a novel salt-tolerant Bacillus species: description of Bacillus dipsosauri sp. nov. J Appl Bacteriol 81:109–112PubMedGoogle Scholar
  157. Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and Archaea. J Mol Microbiol Biotechnol 15:74–92PubMedCrossRefGoogle Scholar
  158. Leduc LG, Ferroni GD (1994) The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol Rev 14:103–120CrossRefGoogle Scholar
  159. Leigh JA, Wolfe RS (1983) Acetogenium kivui gen. nov., sp. nov., a thermophilic acetogenic bacterium. Int J Syst Bacteriol 33:886–889CrossRefGoogle Scholar
  160. Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72:623–634PubMedCrossRefGoogle Scholar
  161. Lettinga G, Rebac S, Parshina S, Nozhevnikova A, Van Lier JB, Stams AJM (1999) High-rate anaerobic treatment of wastewater at low temperatures. App Env Microbiol 65:1696–1702Google Scholar
  162. Leveau JH, Uroz S, De Boer W (2009) The bacterial genus Collimonas: mycophagy, weathering and other adaptive solutions to life in oligotrophic soil environments. Environ Microbiol 12:281–292PubMedCrossRefGoogle Scholar
  163. Li X-Z, Poole K (1999) Organic solvent-tolerant mutants of Pseudomonas aeruginosa display multiple antibiotic resistance. Can J Microbiol 45:18–22PubMedCrossRefGoogle Scholar
  164. Lien T, Madsen M, Rainey FA, Birkeland N-K (1998) Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int J Syst Bacteriol 48:1007–1013PubMedCrossRefGoogle Scholar
  165. Litchfield CD (1998) Survival strategies for microorganisms in hypersaline environments and their relevance to life on early Mars. Meteorit Planet Sci 33:813–819PubMedCrossRefGoogle Scholar
  166. Lopez-Archilla AI, Marin I, Amils R (1995) Microbial ecology of an acidic river: biotechnological applications. In: Vargas T, Jerez CA, Wiertz JV, Toledo H (eds) Biohydrometallurgical processing II. University of Chile, Santiago, pp 63–74Google Scholar
  167. Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76(21):6971–6981. doi: 10.1128/AEM.01868-10 PubMedCrossRefGoogle Scholar
  168. MacElroy M (1974) Some comments on the evolution of extremophiles. Biosystems 6:74–75CrossRefGoogle Scholar
  169. Margesin R, Fell JW (2008) Mrakiella cryoconiti gen. nov., sp. nov., a psychrophilic, anamorphic, basidiomycetous yeast from alpine and Arctic habitats. Int J Syst Evol Microbiol 58:2977–2982PubMedCrossRefGoogle Scholar
  170. Margesin R, Schinner F (1998) Low-temperature bioremediation of a waste water contaminated with anionic surfactant and fuel oil. Appl Microbiol Biotechnol 49:482–486PubMedCrossRefGoogle Scholar
  171. Marion GM, Fritsen CH, Eicken H, Payne MC (2003) The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues. Astrobiology 3:785–811PubMedCrossRefGoogle Scholar
  172. Marteinsson VT, Birrien J-L, Reysenbach A-L, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr UB, Prieur D (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49:351–359PubMedCrossRefGoogle Scholar
  173. Maruyama A, Honda D, Yamamoto H, Kitamura K, Higashihara T (2000) Phylogenetic analysis of psychrophilic bacteria isolated from the Japan trench, including a description of the deep-sea species Psychrobacter pacificensis, sp. nov. Int J Syst Evol Microbiol 50:835–846PubMedGoogle Scholar
  174. Mata JA, Béjar V, Bressollier P, Tallon R, Urdaci MC, Quesada E, Llamas I (2008) Characterization of exopolysaccharides produced by three moderately halophilic bacteria belonging to the family Alteromonadaceae. J Appl Microbiol 105:521–528PubMedCrossRefGoogle Scholar
  175. Matsuo S, Shirai H, Takada Y (2010) Isocitrate dehydrogenase isozymes from a psychrotrophic bacterium, Pseudomonas psychrophila. Arch Microbiol 192:639–650PubMedCrossRefGoogle Scholar
  176. McCliment EA, Voglesonger KM, O'Day PA, Dunn EE, Holloway JR, Cary SC (2006) Colonization of nascent, deep-sea hydrothermal vents by a novel archaeal and nanoarchaeal assemblage. Environ Microbiol 8:114–125PubMedCrossRefGoogle Scholar
  177. McGenity TJ (2010) Halophilic hydrocarbon degraders. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1939–1951CrossRefGoogle Scholar
  178. McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2:243–250PubMedCrossRefGoogle Scholar
  179. Mesbah NM, Wiegel J (2008) Life at extreme limits. The anaerobic halophilic alkalithermophiles. Ann NY Acad Sci 1125:44–57PubMedCrossRefGoogle Scholar
  180. Mesbah N, Cook G, Wiegel J (2009) The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na+ (K+)/H+ antiporters. Mol Microbiol 74:270–281PubMedCrossRefGoogle Scholar
  181. Mevs U, Stackebrandt E, Schumann P, Gallikowski CA, Hirsch P (2000) Modestobacter multiseptatus gen. nov., sp. nov., a budding actinomycete from soils of the Asgard range (Transantarctic Mountains). Int J Syst Evol Microbiol 50:337–346PubMedGoogle Scholar
  182. Mori K, Yamaguchi K, Sakiyama Y, Urabe T, Suzuki KI (2009) Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiseria phyl. nov., originally called candidate phylum OP5. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.010033-0 Google Scholar
  183. Mountfort DO, Rainey FA, Burghardt J, Kaspar HF, Stackebrandt E (1997) Clostridium vincentii sp. nov., a new obligately anaerobic, saccharolytic, psychrophilic bacterium isolated from low-salinity pond sediment of the McMurdo Ice Shelf, Antarctica. Arch Microbiol 167:54–60PubMedCrossRefGoogle Scholar
  184. Mountfort DO, Rainey FA, Burghardt J, Kaspar HF, Stackebrandt E (1998) Psychromonas antarcticus gen. nov., sp. nov., a new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo Ice Shelf, Antarctica. Arch Microbiol 169:231–238PubMedCrossRefGoogle Scholar
  185. Nagasaka S, Yoshimura E (2008) External iron regulates polyphosphate content in the acidophilic, thermophilic alga Cyanidium caldarium. Biol Trace Elem Res 125:286–289PubMedCrossRefGoogle Scholar
  186. Nakajima H, Kobayashi K, Kobayashi M, Asako H, Aono R (1995) Overexpression of the robA gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli. Appl Environ Microbiol 61:2302–2307PubMedGoogle Scholar
  187. Nakamura S, Wakabayashi K, Nakai R, Aono R, Horikoshi K (1993) Purification and some properties of an alkaline xylanase from alkalophilic Bacillus sp. strain 41M-1. Appl Environ Microbiol 59:2311–2316PubMedGoogle Scholar
  188. Nikaido H (1996) Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 178:5853–5859PubMedGoogle Scholar
  189. Norris PR, Johnson DB (1998) Acidophilic microorganisms. In: Horikoshi K, Grant WD (eds) Microbial life in extreme environments. Wiley, New York, pp 133–154Google Scholar
  190. Oethinger M, Kern WV, Goldman JD, Levy SB (1998) Association of organic solvent tolerance and fluoroquinolone resistance in clinical isolates of Escherichia coli. J Antimicrob Chemother 41:111–114PubMedCrossRefGoogle Scholar
  191. Ogg C, Patel BK (2009) Sporolituus thermophilus gen. nov., sp. nov., a citrate-fermenting, thermophilic, anaerobic bacterium from geothermal waters of the Great Artesian Basin of Australia. Int J Syst Evol Microbiol 59:2848–2853PubMedCrossRefGoogle Scholar
  192. Ollivier B, Caumette P, Garcia J-L, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38PubMedGoogle Scholar
  193. Ollivier B, Fardeau ML, Cayol JL, Magot M, Patel BKC, Frensier G, Garcia J-L (1998) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Bacteriol 48:821–828PubMedCrossRefGoogle Scholar
  194. Olsson-Francis K, De la Torre R, Cockell CS (2010) Isolation of novel extreme-tolerant cyanobacteria from a rock-dwelling microbial community by using exposure to low Earth orbit. Appl Environ Microbiol 76:2115–2121PubMedCrossRefGoogle Scholar
  195. Onofri S, Selbmann L, Zucconi L, Pagano S (2004) Antarctic microfungi as models for exobiology. Planet Space Sci 52:229–237CrossRefGoogle Scholar
  196. Orange F, Westall F, Disnar JR, Prieur D, Bienvenu N, Le Romancer M, Défarge Ch (2009) Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocks. Geobiology 7:403–418PubMedCrossRefGoogle Scholar
  197. Oren A (2006) Life at high salt conditions. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, volume 2. Springer, New York, pp 263–282Google Scholar
  198. Oren A, Ventosa A, Grant WD (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Evol Microbiol 47:233–238Google Scholar
  199. Oshima T, Moriya T (2008) A preliminary analysis of microbial and biochemical properties of high-temperature compost. Ann NY Acad Sci 1125:338–344PubMedCrossRefGoogle Scholar
  200. Ozturk S, Aslim B (2009) Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress. Environ Sci Pollut Res Int 17:595–602PubMedCrossRefGoogle Scholar
  201. Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasin bacteria: new insights. Biochim Biophys Acta: Biomembr 1717:67–88CrossRefGoogle Scholar
  202. Paerl HW, Priscu JC (1998) Microbial phototrophic, heterotrophic, and diazotrophic activities associated with aggregates in the permanent ice cover of Lake Bonney, Antarctica. Microb Ecol 36:221–230PubMedCrossRefGoogle Scholar
  203. Panda SK, Jyoti V, Bhadra B, Nayak KC, Shivaji S, Rainey FA, Das SK (2009) Thiomonas bhubaneswarensis sp. nov., a novel obligately mixotrophic, moderately thermophilic, thiosulfate oxidizing bacterium. Int J Syst Evol Microbiol 59:2171–2175PubMedCrossRefGoogle Scholar
  204. Patching JW, Eardly D (1997) Bacterial biomass and activity in the deep waters of the eastern Atlantic—evidence of a barophilic community. Deep Sea Res I Oceanogr Res Pap 44:1655–1670CrossRefGoogle Scholar
  205. Paulsen IT, Brown MH, Skurray RA (1996) Proton-dependent multidrug efflux systems. Microbiol Rev 60:575–608PubMedGoogle Scholar
  206. Phillips RW, Wiegel J, Berry CY, Fliermans C, Peacock AD, White DC, Shimkets LJ (2002) Kineococcus radiotolerans sp. nov. a radiation-resistant, Gram positive bacterium. Int J Syst Evol Microbiol 52:933–938PubMedCrossRefGoogle Scholar
  207. Pinkart HC, Wolfram JW, Rogers R, White DC (1996) Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene. Appl Environ Microbiol 62:1129–1132PubMedGoogle Scholar
  208. Pledger RJ, Crump BC, Baross JA (1994) A barophilic response by two hyperthermophilic, hydrothermal vent archaea: an upward shift in the optimal temperature and acceleration of growth rate at supra-optimal temperatures by elevated pressure. FEMS Microbiol Ecol 14:233–242CrossRefGoogle Scholar
  209. Podar M, Anderson I, Makarova KS, Elkins JG, Ivanova N, Wall MA, Lykidis A, Mavromatis K, Sun Sun H, Hudson ME, Chen W, Deciu C, Hutchison D, Eads JR, Anderson A, Fernandes F, Szeto E, Lapidus A, Kyrpides NC, Saier MH Jr, Richardson PM, Rachel R, Huber H, Eisen JA, Koonin EV, Keller M, Stetter KO (2008) A genomic analysis of the archaeal system Ignicoccus hospitalisNanoarchaeum equitans. Genome Biol 9:R158PubMedCrossRefGoogle Scholar
  210. Poli A, Esposito E, Orlando P, Lama L, Giordano A, De Appolonia F, Nicolaus B, Gambacorta A (2007) Halomonas alkaliantarctica sp. nov., isolated from saline lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium. Syst Appl Microbiol 30:31–38PubMedCrossRefGoogle Scholar
  211. Poli A, Romano I, Cordella P, Orlando P, Nicolaus B, Ceschi Berrini C (2009) Anoxybacillus thermarum sp. nov., a novel thermophilic bacterium isolated from thermal mud in Euganean hot springs, Abano Terme, Italy. Extremophiles 13:867–874PubMedCrossRefGoogle Scholar
  212. Prevost S, Andre S, Remize F (2010) PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage. Curr Microbiol 61:525–533PubMedCrossRefGoogle Scholar
  213. Prieur D, Erauso G, Jeanthon C (1995) Hyperthermophilic life at deep-sea hydrothermal vents. Planet Space Sci 43:115–122PubMedCrossRefGoogle Scholar
  214. Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2009) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 104:420–428Google Scholar
  215. Rainey FA, Donnison AM, Janssen PH, Saul D, Rodrigo A, Bergquist PL, Daniel RM, Stackebrandt E, Morgan HW (1994) Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol Lett 120:263–266PubMedCrossRefGoogle Scholar
  216. Ramos J-L, Duque E, Rodriguez-Herva JJ, Godoy P, Haidour A, Reyes F, Fernandez-Barrero A (1997) Mechanisms for solvent tolerance in bacteria. J Biol Chem 272:3887–3890PubMedCrossRefGoogle Scholar
  217. Ramos J-L, Duque E, Godoy P, Segura A (1998) Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J Bacteriol 180:3323–3329PubMedGoogle Scholar
  218. Rawlings DE, Johnson DB (2007) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153:315–324PubMedCrossRefGoogle Scholar
  219. Ray MK, Kumar GS, Janiyani K, Kannan K, Jagtap P, Basu MK, Shivaji S (1998) Adaptation to low temperature and regulation of gene expression in Antarctic psychrotrophic bacteria. J Biosci 23:423–435CrossRefGoogle Scholar
  220. Rettberg P, Rabbow E, Panitz C, Horneck G (2004) Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues. Adv Space Res 33:1294–1301PubMedCrossRefGoogle Scholar
  221. Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 4(1):5CrossRefGoogle Scholar
  222. Robidart JC, Bench SR, Feldman RA, Novoradovsky A, Podell SB, Gaasterland T, Allen EE, Felbeck H (2008) Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ Microbiol 10:727–737PubMedCrossRefGoogle Scholar
  223. Roeßler M, Müller V (2002) Chloride, a new environmental signal molecule involved in gene regulation in a moderately halophilic bacterium, Halobacillus halophilus. J Bacteriol 184:6207–6215PubMedCrossRefGoogle Scholar
  224. Romano I, Dipasquale L, Orlando P, Lama L, d'Ippolito G, Pascual J, Gambacorta A (2010) Thermoanaerobacterium thermostercus sp. nov., a new anaerobic thermophilic hydrogen-producing bacterium from buffalo-dung. Extremophiles 14:233–240PubMedCrossRefGoogle Scholar
  225. Rossi M, Buzzini P, Cordisco L, Amaretti A, Sala M, Raimondi S, Ponzoni C, Pagnoni UM, Matteuzzi D (2009) Growth, lipid accumulation, and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts. FEMS Microbiol Ecol 69:362–373Google Scholar
  226. Ruger H-J, Fritze D, Sproer C (2000) New psychrophilic and psychrotolerant Bacillus marinus strains from tropical and polar deep-sea sediments and emended description of the species. Int J Syst Evol Microbiol 50:1305–1313PubMedGoogle Scholar
  227. Russell NJ (1997) Psychrophilic bacteria—molecular adaptations of membrane lipids. Comp Biochem Physiol A Physiol 118:489–493PubMedCrossRefGoogle Scholar
  228. Salameh MA, Wiegel J (2007) Lipases from extremophiles and potential for industrial applications. Adv Appl Microbiol Chapter 7 61:253–283PubMedCrossRefGoogle Scholar
  229. Sancho LG, De la Torre R, Horneck G, Ascaso C, De Los RA, Pintado A, Wierzchos J, Schuster M (2007) Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 7:443–454PubMedCrossRefGoogle Scholar
  230. Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268PubMedCrossRefGoogle Scholar
  231. Sardessai YN, Bhosle S (2004) Industrial potential of organic solvent tolerant bacteria. Biotechnol Prog 20:655–660PubMedCrossRefGoogle Scholar
  232. Sass H, Berchtold M, Branke J, Konig H, Cypionka H, Babenzien H-D (1998) Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. Syst Appl Microbiol 21:212–219PubMedGoogle Scholar
  233. Schleper C, Puehler G, Kuhlmorgen B, Zillig W (1995) Life at extremely low pH. Nature 375:741–742PubMedCrossRefGoogle Scholar
  234. Schut F, Prins RA, Gottschal JC (1997) Oligotrophy and pelagic marine bacteria: facts and fiction. Aquat Microb Ecol 12:177–202CrossRefGoogle Scholar
  235. Sellek GA, Chaudhuri JB (1999) Biocatalysis in organic media using enzymes from extremophiles. Enz Microbial Tech 25:471–482CrossRefGoogle Scholar
  236. Semenov AM (1991) Physiological bases of oligotrophy of microorganisms and the concept of microbial community. Microb Ecol 22:239–247CrossRefGoogle Scholar
  237. Setlow P (1994) Mechanisms which contribute to the long-term survival of spores of Bacillus species. J Appl Bacteriol Symp Suppl 76:49S–60SGoogle Scholar
  238. Shashidhar R, Bandekar JR (2009) Deinococcus piscis sp. nov., a radiation-resistant bacterium isolated from a marine fish. Int J Syst Evol Microbiol 59:2714–2717Google Scholar
  239. Shiratori H, Sasaya K, Ohiwa H, Ikeno H, Ayame S, Kataoka N, Miya A, Beppu T, Ueda K (2009) Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge. Int J Syst Evol Microbiol 59:1764–1770PubMedCrossRefGoogle Scholar
  240. Shivaji S, Bhadra B, Rao RS, Pradhan S (2008) Rhodotorula himalayensis sp. nov., a novel psychrophilic yeast isolated from Roopkund Lake of the Himalayan mountain ranges, India. Extremophiles 12:375–381PubMedCrossRefGoogle Scholar
  241. Shock EL (1997) High temperature life without photosynthesisias a model for Mars. J Geophys Res Planets 102:23687–23694CrossRefGoogle Scholar
  242. Shumkova GA, Papova LG, Balnokin YV (2000) Export of Na+ from cells of the halotolerant microalga Dunaliella maritima: Na+/H+ antiporter or primary Na+-pump? Biochem-Moscow 65:917–923Google Scholar
  243. Shuryak I, Brenner DJ (2010) Effects of radiation quality on interactions between oxidative stress, protein and DNA damage in Deinococcus radiodurans. Radiat Environ Biophys 49:693–703PubMedCrossRefGoogle Scholar
  244. Siebert J, Hirsch P, Hoffmann B, Gliesche CG, Peissl K, Jendrach M (1996) Cryptoendolithic microorganisms from Antarctic sandstone of Linnaeus Terrace (Asgard Range): diversity, properties and interactions. Biodivers Conserv 5:1337–1363CrossRefGoogle Scholar
  245. Singh G, Ahuja N, Batish M, Capalash N, Sharma P (2008) Biobleaching of wheat straw-rich soda pulp with alkalophilic laccase from gamma-proteobacterium JB: optimization of process parameters using response surface methodology. Bioresour Technol 99:7472–7479PubMedCrossRefGoogle Scholar
  246. Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a high Arctic glacier. Appl Environ Microbiol 66:3214–3220PubMedCrossRefGoogle Scholar
  247. Smith MC, Bowman JP, Scott FJ, Line MA (2000) Sublithic bacteria associated with Antarctic quartz stones. Antarct Sci 12:177–184Google Scholar
  248. Smith DJ, Schuerger AC, Davidson MM, Pacala SW, Bakermans C, Onstott TC (2009) Survivability of Psychrobacter cryohalolentis K5 under simulated Martian surface conditions. Astrobiology 9:221–228PubMedCrossRefGoogle Scholar
  249. Sorokin DY, Muyzer G (2010a) Desulfurispira natronophila gen. nov. sp. nov.: an obligately anaerobic dissimilatory sulfur-reducing bacterium from soda lakes. Extremophiles 14:349–355Google Scholar
  250. Sorokin DY, Muyzer G (2010b) Haloalkaliphilic spore-forming sulfidogens from soda lake sediments and description of Desulfitispora alkaliphila gen. nov., sp. nov. Extremophiles 14:313–320CrossRefGoogle Scholar
  251. Sorokin DY, Trotsenko YA, Doronina NV, Tourova TP, Galinski EA, Kolganova TV, Muyzer G (2007) Methylohalomonas lacus gen. nov., sp. nov. and Methylonatrum kenyense gen. nov., sp. nov., methylotrophic gammaproteobacteria from hypersaline lakes. Int J Syst Evol Microbiol 57:2762–2769PubMedCrossRefGoogle Scholar
  252. Sproessler BG (1993) Milling and baking. In: Nagodawithana T, Reed G (eds) Enzymes in food processing. Academic, New York, pp 293–320Google Scholar
  253. Staley JT, Gosink JJ (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Ann Rev Microbiol 53:189–215CrossRefGoogle Scholar
  254. Stetter KO (1996) Hyperthermophilic prokaryotes. FEMS Microbiol Rev 18:149–158CrossRefGoogle Scholar
  255. Stevens T (1997) Lithoautotrophy in the subsurface. FEMS Microbiol Rev 20:327–337CrossRefGoogle Scholar
  256. Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29PubMedCrossRefGoogle Scholar
  257. Summit M, Scott B, Nielson K, Mathur E, Baross J (1998) Pressure enhances thermal stability of DNA polymerase from three thermophilic organisms. Extremophiles 2:339–345PubMedCrossRefGoogle Scholar
  258. Sun HJ, Friedmann EI (1999) Growth on geological time scales in the Antarctic cryptoendolithic microbial community. Geomicrobiol J 16:193–202CrossRefGoogle Scholar
  259. Takahara T, Tanabe O (1960) Studies on the reduction of indigo in industrial fermentation vat (VII). J Ferment Technol 38:324–331Google Scholar
  260. Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. PNAS 105:10949–10954PubMedCrossRefGoogle Scholar
  261. Tang K, Zong R, Zhang F, Xiao N, Jiao N (2009) Characterization of the photosynthetic apparatus and proteome of Roseobacter denitrificans. Curr Microbiol 60:124–133PubMedCrossRefGoogle Scholar
  262. Teske AP (2005) The deep subsurface biosphere is alive and well. Trends Microbiol 19:402–404CrossRefGoogle Scholar
  263. Tiquia SM, Mormile MR (2010) Extremophiles—a source of innovation for industrial and environmental applications. Environ Technol 31:823–830PubMedCrossRefGoogle Scholar
  264. Tsubata T, Tezuka T, Kurane R (1997) Change of cell membrane hydrophobicity in a bacterium tolerant to toxic alcohols. Can J Microbiol 43:295–299CrossRefGoogle Scholar
  265. Ueno S, Kaieda N, Koyama N (2000) Characterization of a P-type Na+-ATPase of a facultatively anaerobic alkaliphile, Exiguobacterium aurantiacum. J Biol Chem 275:14537–14540PubMedCrossRefGoogle Scholar
  266. Unemoto T (2000) Bioenergetics of marine bacteria—respiration-coupled Na+ pump. Yakugaku Zasshi 120:16–27PubMedGoogle Scholar
  267. Unemoto T, Hayashi M (1993) Na+ translocating NADH-quinone reductase of marine and halophilic bacteria. J Bioenerg Biomembr 25:385–391PubMedCrossRefGoogle Scholar
  268. Vainshtein MB, Kudryashova EB (2000) Nanobacteria. Microbiol 69:129–138CrossRefGoogle Scholar
  269. Van Benthem R, Krooneman J, De Grave W, Hammenga-Dorenbos H (2009) Thermal design and turbidity sensor for autonomous bacterial growth measurements in spaceflight. Ann NY Acad Sci 1161:147–165PubMedCrossRefGoogle Scholar
  270. Van-Thuoc D, Quillaguamán J, Mamo G, Mattiasson B (2008) Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1. J Appl Microbiol 104:420–428PubMedGoogle Scholar
  271. Vedder A (1934) Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingsbodems. Antonie van Leeuwenhoek J Microbiol Serol 1:143–147Google Scholar
  272. Ventosa A, Marquez MC, Garabito MJ, Arahal DR (1998a) Moderately halophilic gram-positive bacterial diversity in hypersaline environments. Extremophiles 2:297–304CrossRefGoogle Scholar
  273. Ventosa A, Nieto JJ, Oren A (1998b) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544Google Scholar
  274. Vieille C, Zeikus JG (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43PubMedCrossRefGoogle Scholar
  275. Villar SE, Edwards HG (2006) Raman spectroscopy in astrobiology. Anal Bioanal Chem 384:100–113CrossRefGoogle Scholar
  276. Vreeland RH, Litchfield CD, Martin EL, Elliot E (1980) Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495CrossRefGoogle Scholar
  277. Wagner ID, Wiegel J (2008) Diversity of thermophilic anaerobes. Ann NY Acad Sci 1125:1–43PubMedCrossRefGoogle Scholar
  278. Wainwright M, Brakah F, Al-Turk I, Ta A (1991) Oligotrophic microorganisms in industry, medicine and the environment. Sci Prog 75:313–322PubMedGoogle Scholar
  279. Wainwright M, Tasneem AA, Barakah F (1993) A review of the role of oligotrophic microorganisms in biodeterioration. Int Biodeterior Biodegrad 31:1–13CrossRefGoogle Scholar
  280. Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC, Gómez-Silva B, Amundson R, Friedmann EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398PubMedCrossRefGoogle Scholar
  281. Wettergreen D, Cabrol N, Baskaran V, Calderón F, Heys S, Jonak D, Lüders A, Pane D, Smith T, Teza J, Tompkins P, Villa D, Williams C, Wagner M (2005) Second experiments in the robotic investigation of life in the Atacama desert of Chile. Appl Environ Microbiol 72:7902–7908Google Scholar
  282. Wiegel J (1990) Temperature spans for growth: a hypothesis and discussion. FEMS Microbiol Rev 75:155–170Google Scholar
  283. Wiegel J (1992) The obligately anaerobic thermophilic bacteria. In: Kristjansson JK (ed) Thermophilic bacteria. CRC, Boca Raton, pp 105–184Google Scholar
  284. Wiegel J (1998) Anaerobic alkalithermohiles, a novel group of extremophiles. Extremophiles 2:257–267PubMedCrossRefGoogle Scholar
  285. Wiegel J, Adams MWW (1998) Thermophiles—the keys to molecular evolution and the origin of life? Taylor and Francis, LondonGoogle Scholar
  286. Wiegel J, Canganella F (2000) Extreme thermophiles. Encyclopedia of Life Sciences, Nature Publishing GroupGoogle Scholar
  287. Wiegel J, Ljungdahl LG (1996) The importance of thermophilic bacteria in biotechnology. CRS-Rev Biotech 3:39–107CrossRefGoogle Scholar
  288. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms. Proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci USA 87:4576–4579PubMedCrossRefGoogle Scholar
  289. Wynn-Williams DD, Edwards HGM (2000) Antarctic ecosystems as models for extraterrestrial surface habitats. Planet Space Sci 48:1065–1075CrossRefGoogle Scholar
  290. Yano Y, Nakayama A, Ishihara K, Saito H (1998) Adaptive changes in membrane lipids of barophilic bacteria in response to changes in growth pressure. Appl Environ Microbiol 64:479–485PubMedGoogle Scholar
  291. Yayanos AA, Dietz AS, Van Boxtel R (1982) Dependence of reproduction rate on pressure as hallmark of deep-sea bacteria. Appl Environ Microbiol 44:1356–1361PubMedGoogle Scholar
  292. Yu Y, Xin YH, Liu HC, Chen B, Sheng J, Chi ZM, Zhou PJ, Zhang DC (2008) Sporosarcina antarctica sp. nov., a psychrophilic bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 58:2114–2117PubMedCrossRefGoogle Scholar
  293. Yuan M, Zhang W, Dai S, Wu J, Wang Y, Tao T, Chen M, Lin M (2009) Deinococcus gobiensis sp. nov., an extremely radiation-resistant bacterium. Int J Syst Evol Microbiol 59:1513–1517PubMedCrossRefGoogle Scholar
  294. Zeng X, Birrien JL, Fouquet Y, Cherkashov G, Jebbar M, Querellou J, Oger P, Cambon-Bonavita MA, Xiao X, Prieur D (2009) Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. ISME J 3:873–876PubMedCrossRefGoogle Scholar
  295. Zhang YQ, Sun CH, Li WJ, Yu LY, Zhou JQ, Zhang YQ, Xu LH, Jiang CL (2007) Deinococcus yunweiensis sp. nov., a gamma- and UV-radiation-resistant bacterium from China. Int J Syst Evol Microbiol 57:370–375PubMedCrossRefGoogle Scholar
  296. Zhang DC, Li HR, Xin YH, Chi ZM, Zhou PJ, Yu Y (2008a) Marinobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 58:1463–1466CrossRefGoogle Scholar
  297. Zhang DC, Li HR, Xin YH, Liu HC, Chi ZM, Zhou PJ, Yu Y (2008b) Phaeobacter arcticus sp. nov., a psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 58:1384–1387CrossRefGoogle Scholar
  298. Zhang G, Jiang N, Liu X, Dong X (2008c) Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, “Methanolobus psychrophilus” sp. nov., prevalent in Zoige wetland of the Tibetan plateau. Appl Environ Microbiol 74:6114–6120CrossRefGoogle Scholar
  299. Zhang GI, Hwang CY, Kang SH, Cho BC (2009) Maribacter antarcticus sp. nov., a psychrophilic bacterium isolated from a culture of the Antarctic green alga Pyramimonas gelidicola. Int J Syst Evol Microbiol 59:1455–1459PubMedCrossRefGoogle Scholar
  300. Zhilina TN, Zavarzin GA, Detkova EN, Rainey FA (1996) Natroniella acetigena gen. nov. sp. nov., an extremely haloalkaliphilic, homoacetic bacterium: a new member of Haloanaerobiales. Curr Microbiol 32:320–326PubMedCrossRefGoogle Scholar
  301. Zhong CQ, Song S, Fang N, Liang X, Zhu H, Tang XF, Tang B (2009) Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis. Biotechnol Bioeng 104:862–870PubMedCrossRefGoogle Scholar
  302. Zhou H, Zhang R, Hu P, Zeng W, Xie Y, Wu C, Qiu G (2008) Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite. J Appl Microbiol 105:591–601PubMedCrossRefGoogle Scholar
  303. Zobell CE, Morita RY (1957) Barophilic bacteria in some deep-sea sediments. J Bacteriol 73:563–568PubMedGoogle Scholar
  304. Zolensky ME (2005) Extraterrestrial water. Elements 1:39–43CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Agrobiology and AgrochemistryUniversity of TusciaViterboItaly
  2. 2.Department of Microbiology and Center for Biological Resource RecoveryUniversity of GeorgiaAthensUSA

Personalised recommendations