, Volume 97, Issue 12, pp 1097–1105 | Cite as

Mass predicts web asymmetry in Nephila spiders

Original Paper


The architecture of vertical aerial orb webs may be affected by spider size and gravity or by the available web space, in addition to phylogenetic and/or developmental factors. Vertical orb web asymmetry measured by hub displacement has been shown to increase in bigger and heavier spiders; however, previous studies have mostly focused on adult and subadult spiders or on several size classes with measured size parameters but no mass. Both estimations are suboptimal because (1) adult orb web spiders may not invest heavily in optimal web construction, whereas juveniles do; (2) size class/developmental stage is difficult to estimate in the field and is thus subjective, and (3) mass scales differently to size and is therefore more important in predicting aerial foraging success due to gravity. We studied vertical web asymmetry in a giant orb web spider, Nephila pilipes, across a wide range of size classes/developmental stages and tested the hypothesis that vertical web asymmetry (measured as hub displacement) is affected by gravity. On a sample of 100 webs, we found that hubs were more displaced in heavier and larger juveniles and that spider mass explained vertical web asymmetry better than other measures of spider size (carapace and leg lengths, developmental stage). Quantifying web shape via the ladder index suggested that, unlike in other nephilid taxa, growing Nephila orbs do not become vertically elongated. We conclude that the ontogenetic pattern of progressive vertical web asymmetry in Nephila can be explained by optimal foraging due to gravity, to which the opposing selective force may be high web-building costs in the lower orb. Recent literature finds little support for alternative explanations of ontogenetic orb web allometry such as the size limitation hypothesis and the biogenetic law.


Nephila pilipes Spider web architecture Ontogeny Biogenetic law Size limitation hypothesis Allometry Nephilidae 


  1. Agnarsson I, Kuntner M, Blackledge TA (2010) Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider. PLoS ONE 5(9):e11234. doi:10.1371/journal.pone.0011234 CrossRefPubMedGoogle Scholar
  2. ap Rhisiart A, Vollrath F (1994) Design features of the orb web of the spider, Araneus diadematus. Behav Ecol 5:280–287. doi:10.1093/beheco/5.3.280 CrossRefGoogle Scholar
  3. Benjamin SP, Zschokke S (2004) Homology, behaviour and spider webs: web construction behavior of Linyphia hortensis and L. triangularis (Araneae: Linyphiidae) and its evolutionary significance. J Evol Biol 17:120–130. doi:10.1046/j.1420-9101.2004.00667.x CrossRefPubMedGoogle Scholar
  4. Blackledge TA, Gillespie RG (2002) Estimation of capture areas of spider orb webs in relation to asymmetry. J Arachnol 30:70–77CrossRefGoogle Scholar
  5. Blackledge TA, Scharff N, Coddington JA, Szüts T, Wenzel JW, Hayashi CY, Agnarsson I (2009) Spider web evolution and diversification in the molecular era. PNAS 106:5229–5234. doi:10.1073/pnas.0901377106 CrossRefPubMedGoogle Scholar
  6. Bleher B (2000) Development of web-building and spinning apparatus in the early ontogeny of Nephila madagascariensis (Vinson, 1863) (Araneae: Tetragnathidae). Bull Br arachnol Soc 11(7):275–283Google Scholar
  7. Coslovsky M, Zschokke S (2009) Asymmetry in orb-webs: an adaptation to web building costs? J Insect Behav 22:29–38. doi:10.1007/s10905-008-9151-2 CrossRefGoogle Scholar
  8. Eberhard WG (1975) The ‘inverted ladder’ orb web of Scoloderus sp. and the intermediate orb of Eustala (?) sp. (Araneae: Araneidae). J Nat Hist 9:93–106. doi:10.1080/00222937500770071 CrossRefGoogle Scholar
  9. Eberhard WG, Barrantes G, Madrigal-Brenes R (2008) Vestiges of an orb-weaving ancestor? The “biogenetic law” and ontogenetic changes in the webs and building behavior of the black widow spider Latrodectus geometricus (Araneae: Theridiidae). Ethol Ecol Evol 20:211–244. doi:10.1080/08927014.2008.9522523 CrossRefGoogle Scholar
  10. Gregorič M, Kostanjšek R, Kuntner M (2010) Orb web features as taxonomic characters in Zygiella s.l. (Araneae: Araneidae). J Arachnol 38:319–327CrossRefGoogle Scholar
  11. Harmer AMT (2009) Elongated orb-webs of Australian ladder-web spiders (Araneidae: Telaprocera) and the significance of orb-web elongation. J Ethol 27:453–460. doi:10.1007/s10164-008-0142-8 CrossRefGoogle Scholar
  12. Harmer AMT, Herberstein ME (2009) Taking it to extremes: what drives extreme web elongation in Australian ladder web spiders (Araneidae: Telaprocera maudae)? Anim Behav 78:499–504. doi:10.1016/j.anbehav.2009.05.023 CrossRefGoogle Scholar
  13. Herberstein ME, Heiling AM (1999) Asymmetry in spider orb webs: a result of physical constraints? Anim Behav 58:1241–1246. doi:10.1006/anbe.1999.1255 CrossRefPubMedGoogle Scholar
  14. Hesselberg T (2010) Ontogenetic changes in web design in two orb-web spiders. Ethology 116:535–545. doi:10.1111/j.1439-0310.2010.01760.x CrossRefGoogle Scholar
  15. Higgins L (1992) Developmental changes in barrier web structure under different levels of predation risk in Nephila clavipes (Araneae, Tetragnathidae). J Insect Behav 5:635–655. doi:10.1007/BF01048010 CrossRefGoogle Scholar
  16. Higgins L (2006) Quantitative shifts in orb-web investment during development in Nephila clavipes (Araneae, Nephilidae). J Arachnol 34:374–386CrossRefGoogle Scholar
  17. Japyassu HF, Ades C (1998) From complete orb to semi-orb webs: developmental transitions in the web of Nephilengys cruentata (Araneae: Tetragnathidae). Behaviour 135:931–956Google Scholar
  18. Kuntner M (2005) A revision of Herennia (Araneae: Nephilidae: Nephilinae), the Australasian ‘coin spiders’. Invertebr Syst 19:391–436. doi:10.1071/IS05024 CrossRefGoogle Scholar
  19. Kuntner M (2006) Phylogenetic systematics of the Gondwanan nephilid spider lineage Clitaetrinae (Araneae, Nephilidae). Zool Scr 35:19–62. doi:10.1111/j.1463-6409.2006.00220.x CrossRefGoogle Scholar
  20. Kuntner M (2007) A monograph of Nephilengys, the pantropical ‘hermit spiders’ (Araneae, Nephilidae, Nephilinae). Syst Entomol 32:95–135. doi:10.1111/j.1365-3113.2006.00348.x CrossRefGoogle Scholar
  21. Kuntner M, Agnarsson I (2009) Phylogeny accurately predicts behaviour in Indian Ocean Clitaetra spiders (Araneae: Nephilidae). Invertebr Syst 23:193–204. doi:10.1071/IS09002 CrossRefGoogle Scholar
  22. Kuntner M, Agnarsson I (2010) Web gigantism in Darwin’s bark spider, a new species from Madagascar (Araneidae: Caerostris). J Arachnol 38:346–356CrossRefGoogle Scholar
  23. Kuntner M, Coddington JA (2009) Discovery of the largest orbweaving spider species: the evolution of gigantism in Nephila. PLoS ONE 4(10):e7516. doi:10.1371/journal.pone.0007516 CrossRefPubMedGoogle Scholar
  24. Kuntner M, Coddington JA, Hormiga G (2008a) Phylogeny of extant nephilid orb-weaving spiders (Araneae, Nephilidae): testing morphological and ethological homologies. Cladistics 24:147–217. doi:10.1111/j.1096-0031.2007.00176.x CrossRefGoogle Scholar
  25. Kuntner M, Haddad CR, Aljančič G, Blejec A (2008b) Ecology and web allometry of Clitaetra irenae, an arboricolous African orb-weaving spider (Araneae, Araneoidea, Nephilidae). J Arachnol 36:583–594CrossRefGoogle Scholar
  26. Kuntner M, Kralj-Fišer S, Gregorič M (2010) Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns in Nephilidae. Biol J Linn Soc 99:849–866. doi:10.1111/j.1095-8312.2010.01414.x CrossRefGoogle Scholar
  27. Maciejewski W (2010) An analysis of the orientation of an orb-web spider. J Theor Biol 265:604–608. doi:10.1016/j.jtbi.2010.05.025 CrossRefPubMedGoogle Scholar
  28. Masters WM, Moffat AJM (1983) A functional explanation of top–bottom asymmetry in vertical orbwebs. Anim Behav 31:1043–1046. doi:10.1016/S0003-3472(83)80010-4 CrossRefGoogle Scholar
  29. Nakata K (2010) Does ontogenetic change in orb web asymmetry reflect biogenetic law? Naturwissenschaften 97:1029–1032. doi:10.1007/s00114-010-0719-2 CrossRefPubMedGoogle Scholar
  30. Nakata K, Zschokke S (2010) Upside-down spiders build upside-down orb webs: web asymmetry, spider orientation and running speed in Cyclosa. Proc R Soc B 277:3019–3025. doi:10.1098/rspb.2010.0729 CrossRefPubMedGoogle Scholar
  31. Nelson G (1985) Ontogeny, phylogeny, paleontology, and the biogenetic law. Syst Zool 27:324–345. doi:10.2307/2412883 CrossRefGoogle Scholar
  32. Robinson MH, Robinson B (1972) The structure, possible function and origin of the remarkable ladder-web built by a New Guinea orb-web spider. J Nat Hist 6:687–694. doi:10.1080/00222937200770631 CrossRefGoogle Scholar
  33. Stowe MK (1978) Observations of two nocturnal orbweavers that build specialized webs: Scoloderus cordatus and Wixia ectypa (Araneae: Araneidae). J Arachnol 6:141–146Google Scholar
  34. Swanson BO, Blackledge TA, Hayashi CY (2007) Spider capture silk: performance implications of variation in an exceptional biomaterial. J Exp Zool 307A:654–666. doi:10.1002/jez CrossRefGoogle Scholar
  35. Zschokke S (1993) The influence of the auxiliary spiral on the capture spiral in Araneus diadematus Clerck (Araneidae). Bull Br Arachnol Soc 9:169–173Google Scholar
  36. Zschokke S, Nakata K (2010) Spider orientation and hub position in orb webs. Naturwissenschaften 97:43–52. doi:10.1007/s00114-009-0609-7 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Matjaž Kuntner
    • 1
  • Matjaž Gregorič
    • 1
  • Daiqin Li
    • 2
    • 3
  1. 1.Institute of Biology, Scientific Research CentreSlovenian Academy of Sciences and ArtsLjubljanaSlovenia
  2. 2.Department of Biological SciencesNational University of SingaporeSingaporeSingapore
  3. 3.College of Life SciencesHubei UniversityWuhanChina

Personalised recommendations