Naturwissenschaften

, Volume 97, Issue 11, pp 951–969 | Cite as

Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions

Review

Abstract

Evolutionary theory has been likened to a “universal acid” (Dennett 1995) that eats its way into more and more areas of science. Recently, developmental biology has been infused by evolutionary concepts and perspectives, and a new field of research—evolutionary developmental biology—has been created and is often called EvoDevo for short. However, this is not the first attempt to make a synthesis between these two areas of biology. In contrast, beginning right after the publication of Darwin’s Origin in 1859, Ernst Haeckel formulated his biogenetic law in 1872, famously stating that ontogeny recapitulates phylogeny. Haeckel was in his turn influenced by pre-Darwinian thinkers such as Karl Ernst von Baer, who had noted that earlier developmental stages show similarities not seen in the adults. In this review, written for an audience of non-specialists, we first give an overview of the history of EvoDevo, especially the tradition emanating from Haeckel and other comparative embryologists and morphologists, which has often been neglected in discussions about the history of EvoDevo and evolutionary biology. Here we emphasize contributions from Russian and German scientists to compensate for the Anglo-American bias in the literature. In Germany, the direct influence of Ernst Haeckel was felt particularly in Jena, where he spent his entire career as a professor, and we give an overview of the “Jena school” of evolutionary morphology, with protagonists such as Oscar Hertwig, Ludwig Plate, and Victor Franz, who all developed ideas that we would nowadays think of as belonging to EvoDevo. Franz ideas about “biometabolic modi” are similar to those of a Russian comparative morphologist that visited Jena repeatedly, A. N. Sewertzoff, who made important contributions to what we now call heterochrony research—heterochrony meaning changes in the relative timing of developmental events. His student I. I. Schmalhausen became an important contributor to the synthetic theory of evolution in Russia and is only partly known outside of the Russian-reading world because only one of his many books was translated into English early on. He made many important contributions to evolutionary theory and we point out the important parallels between Schmalhausen’s ideas (stabilizing selection, autonomization) and C. H. Waddington’s (canalization, genetic assimilation). This is one of the many parallels that have contributed to an increased appreciation of the internationality of progress in evolutionary thinking in the first half of the twentieth century. A direct link between German and Russian evolutionary biology is provided by N. V. Timoféeff-Ressovsky, whose work on, e.g., fly genetics in Berlin is a crucial part of the history of evo-devo. To emphasize the international nature of heterochrony research as predecessor to the modern era of EvoDevo, we include Sir G. R. de Beer’s work in the UK. This historical part is followed by a short review of the discovery and importance of homeobox genes and of some of the major concepts that form the core of modern EvoDevo, such as modularity, constraints, and evolutionary novelties. Major trends in contemporary EvoDevo are then outlined, such as increased use of genomics and molecular genetics, computational and bioinformatics approaches, ecological developmental biology (eco-devo), and phylogenetically informed comparative embryology. Based on our survey, we end the review with an outlook on future trends and important issues in EvoDevo.

Keywords

Modularity Innovations Constraints Heterochrony Atavisms Homeobox Modularity 

References

  1. Alberch P (1980) Ontogenesis and morphological diversification. Amer Zool 20:653–667Google Scholar
  2. Alberch P (1989) The logic of monsters: evidence for internal constraint in development and evolution. Geobios (Paris) 12:21–57Google Scholar
  3. Alberch P, Gould SJ, Oster GF, Wake DB (1979) Size and shape in ontogeny and phylogeny. Paleobiol 5:296–317Google Scholar
  4. Arthur W (2000) Intraspecific variation in developmental characters: the origin of evolutionary novelties. Amer Zool 40:811–818CrossRefGoogle Scholar
  5. Arthur W (2002) The emerging conceptual framework of evolutionary developmental biology. Nature 415:757–764PubMedGoogle Scholar
  6. Blumenfeld LA, Bogdanov YF, Ivanov VI, Lyapunova NA (2000) Pioneer of molecular genetics. Mol Biol 34:955–957CrossRefGoogle Scholar
  7. Brigandt I (2006) Homology and heterochrony: the evolutionary embryologist Gavin Rylands de Beer (1899–1972). J Exp Zool B Mol Dev Evol 306:317–328PubMedCrossRefGoogle Scholar
  8. Carroll SB, Grenier JK, Weatherbee SD (2005) From DNA to diversity. Molecular genetics and the evolution of animal design, 2nd edn. Blackwell, OxfordGoogle Scholar
  9. Coleman W (1962) Georges Cuvier, zoologist. Harvard University Press, CambridgeGoogle Scholar
  10. Darwin C (1871) The descent of man, and selection in relation to sex, 2 vols. Murray, LondonGoogle Scholar
  11. Davidson E (2001) Genomic regulatory networks. Academic, San DiegoGoogle Scholar
  12. de Beer GR (1930) Embryology and evolution. Clarendon, OxfordGoogle Scholar
  13. de Beer GR (1932) Book review: A.N. Sewertzoff “Morphologische Gesetzmässigkeiten der evolution”. Nature 129:490–491CrossRefGoogle Scholar
  14. Dennett D (1995) Darwin’s dangerous idea: evolution and the meanings of life. Simon and Schuster, New YorkGoogle Scholar
  15. Eco U (1966) Narrative structure in Fleming. In: Eco U (ed) The Bond affair. Reprinted (1992) in Glenwood Irons (ed) Gender, language and myth: essays on popular narrative. Toronto University Press, Toronto, pp 157–182Google Scholar
  16. Fortey R (2008) Dry store room no 1: the secret life of the natural history museum. Harper, LondonGoogle Scholar
  17. Franz V (1924) Geschichte der Organismen. Gustav Fischer, JenaGoogle Scholar
  18. Franz V (1934) Die stammesgeschichtliche zunehmende Arbeitsersparnis beim Akkomodationsapparat des Wirbeltierauges. Ein Baustein zur Vervollkommnung der Organismen. Biol Zentbl 54:403–418Google Scholar
  19. Garstang W (1922) The theory of recapitulation. A critical restatement of the biogenetic law. J Linn Soc Lond Zool 35:81–101CrossRefGoogle Scholar
  20. Gehring WJ (1998) Master control genes in development and evolution: the homeobox story. Yale University Press, New HavenGoogle Scholar
  21. Geison GL, Holmes FL (eds) (1993) Research schools. Historical reappraisals. Osiris 8. Chicago University Press, ChicagoGoogle Scholar
  22. Gilbert SF (1994) Dobzhansky, Waddington, and Schmalhausen: embryology and the modern synthesis. In: Adams MB (ed) The evolution of Theodosius Dobzhansky. Princeton University Press, PrincetonGoogle Scholar
  23. Gilbert SF (2001) Ecological developmental biology: developmental biology meets the real world. Dev Biol 233:1–12PubMedCrossRefGoogle Scholar
  24. Gilbert SF (2003) The morphogenesis of evolutionary developmental biology. Int J Dev Biol 47:467–477PubMedGoogle Scholar
  25. Goswami A, Weisbecker V, Sanchez-Villagra MR (2009) Developmental modularity and the marsupial–placental dichotomy. J Exp Zool B Mol Dev Evol 312B:186–195PubMedCrossRefGoogle Scholar
  26. Gould SJ (1974) The origin and function of ‘bizarre’ structures: antler size and skull size in the ‘Irish elk’, Megaloceros giganteus. Evolution 28:191–220CrossRefGoogle Scholar
  27. Gould SJ (1977) Ontogeny and phylogeny. The Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  28. Gould SJ (1989) Wonderful life: Burges shale and the nature of history. Norton, New YorkGoogle Scholar
  29. Gulick JT (1905) Evolution, racial and habitudial. Carnegie Institution, WashingtonGoogle Scholar
  30. Haeckel E (1866) Generelle Morphologie der Organismen, 2 vols.—i. Allgemeine Anatomie der Organismen; ii: Allgemeine Entwicklungsgeschichte der Organismen. Georg Reimer, BerlinGoogle Scholar
  31. Haeckel E (1872) Monographie der Kalkschwämme, 3 vols. Georg Reimer, BerlinGoogle Scholar
  32. Haeckel E (1874) Anthropogenie oder Entwickelungsgeschichte des Menschen. Gemeinverständliche wissenschaftliche Vorträge über die Grundzüge der menschlichen Keimes- und Stammesgeschichte. Wilhelm Engelmann, LeipzigGoogle Scholar
  33. Haeckel E (1920) Natürliche Schöpfungsgeschichte. Walter de Gruyter, BerliGoogle Scholar
  34. Hall BK (1984) Development mechanisms underlying the formation of atavisms. Biol Rev Camb Philos Soc 59:89–124PubMedCrossRefGoogle Scholar
  35. Hall BK (1995) Atavisms and atavistic mutations. Nat Genet 10:126–127PubMedCrossRefGoogle Scholar
  36. Hall BK (1998) Evolutionary developmental biology 2nd edn. Kluwer Academic, DordrechtGoogle Scholar
  37. Hall BK (2000) Guest editorial: evo-devo or devo-evo—does it matter? Evol Dev 2:177–178PubMedCrossRefGoogle Scholar
  38. Hall BK, Olson WM (eds) (2003) Keywords and concepts in evolutionary developmental biology. Harvard University Press, CambridgeGoogle Scholar
  39. Hertwig O (1916) Das Werden der Organismen. Eine Widerlegung von Darwins Zufallstheorie durch das Gesetz der Entwicklung. Gustav Fischer, JenaGoogle Scholar
  40. Hertwig O (1918) Zur Abwehr des ethischen, des sozialen, des politischen Darwinismus. Gustav Fischer, JenaGoogle Scholar
  41. Hertwig O, Hertwig R (1882) Die Coelomtheorie. Jena Z Naturwiss 15:1–150Google Scholar
  42. His W (1874) Unsere Körperform und das physiologische problem ihrer Entstehung. Briefe an einen befreundeten Naturforscher. F. C. W. Vogel, LeipzigGoogle Scholar
  43. Hoekstra HE, Coyne JA (2007) The locus of evolution: evo devo and the genetics of adaptation. Evolution 61:995–1016PubMedCrossRefGoogle Scholar
  44. Hoßfeld U, Olsson L (2002) From the modern synthesis to lysenkoism, and back? Science 297:55–56PubMedCrossRefGoogle Scholar
  45. Hoßfeld U, Olsson L (2003) The road from Haeckel. The Jena tradition in evolutionary morphology and the origin of “evo-devo”. Biol Philos 18:285–307CrossRefGoogle Scholar
  46. Hoßfeld U, Olsson L, Breidbach O (ed) (2003) Carl Gegenbaur and evolutionary morphology. Theory Biosci, vol. 122, Heft 2/3Google Scholar
  47. Hoßfeld U, Olsson L, Levit GS, Breidbach O (2010) Ivan I. Schmalhausen. Die Evolutionsfaktoren (Eine Theorie der stabilisierenden Auslese). Franz Steiner, StuttgartGoogle Scholar
  48. Huxley JS, de Beer GR (1934) The elements of experimental embryology. Cambridge University Press, CambridgeGoogle Scholar
  49. Jägersten G (1955) On the early phylogeny of the metazoa. The bilaterogastraea theory. Zool Bidr Upps 30:321–354Google Scholar
  50. Jägersten G (1959) Further remarks on the early phylogeny of the metazoa. Zool Bidr Upps 33:79–108Google Scholar
  51. Jägersten G (1968) Livscykelns evolution hos metazoa. En generell teori. Scandinavian University Books, StockholmGoogle Scholar
  52. Jägersten G (1972) Evolution of the metazoan life cycle: a comprehensive theory. Scandinavian University Books, StockholmGoogle Scholar
  53. Junker T (2004) Die zweite Darwinsche Revolution. Geschichte des synthetischen Darwinismus in Deutschland 1924 bis 1950 (Acta Biohistorica, Bd. 8). Basilisken-Presse, MarburgGoogle Scholar
  54. Junker T, Hoßfeld U (2009) Die Entdeckung der Evolution. Eine revolutionäre Theorie und ihre Geschichte. 2nd ed. WBG, DarmstadtGoogle Scholar
  55. Kamshilov MM (1974) O gipoteze zameny phenokopij genokopijami. In: Zavadsky KM, Gall JM (eds) Istorija i teorija evoliutzionnogo uchenija. Evoliutzionnyje vzgliady ii schmalhausena. Akademy Nauka SSSR, LeningradGoogle Scholar
  56. Kirschner MW, Gerhard JC (1998) Evolvability. Proc Nat Acad Sci USA 95:8420–8427PubMedCrossRefGoogle Scholar
  57. Kirschner MW, Gerhard JC (2005) The plausibility of life: resolving Darwin’s dilemma. Yale University Press, New HavenGoogle Scholar
  58. Levit GS (2007) The roots of evo-devo in Russia: is there a characteristic “Russian tradition”? Theory Biosci 126(4):131–148PubMedCrossRefGoogle Scholar
  59. Levit GS, Hoßfeld U (2006) The forgotten “Old-Darwinian” synthesis: the theoretical system of Ludwig H. Plate (1862–1937). NTM, NS 14:9–25CrossRefGoogle Scholar
  60. Levit GS, Hoßfeld U (2009) From molecules to the biosphere: Nikolai v. Timofeeff-Ressovsky’s (1900–1981) research program within a totalitarian landscape. Theory Biosci 128:237–248PubMedCrossRefGoogle Scholar
  61. Levit GS, Hoßfeld U, Olsson L (2004) The integration of Darwinism and evolutionary morphology: Alexej Nikolajevich Sewertzoff (1866–1936) and the developmental basis of evolutionary change. J Exp Zool B Mol Dev Evol 302:343–354PubMedGoogle Scholar
  62. Levit GS, Hoßfeld U, Olsson L (2006) From the “Modern synthesis” to cybernetics: Ivan Ivanovich Schmalhausen (1884–1963) and his research program for a synthesis of evolutionary and developmental biology. J Exp Zool B Mol Dev Evol 306:89–106PubMedCrossRefGoogle Scholar
  63. Liao B-Y, Weng M-P, Zhang J (2010) Constrasting genetic paths to morphological and physiological evolution. Proc Nat Acad Sci USA 107:7353–7358PubMedCrossRefGoogle Scholar
  64. Lodish H et al (2003) Molecular cell biology. Freeman, New YorkGoogle Scholar
  65. Love AC (2006) Evolutionary morphology and evo-devo: hierarchy and novelty. Theory Biosci 124:317–333PubMedCrossRefGoogle Scholar
  66. Love AC (2009) Marine invertebrates, model organisms, and the modern synthesis: epistemic values, evo-devo, and exclusion. Theory Biosci 128:19–42PubMedCrossRefGoogle Scholar
  67. Love AC, Raff RA (2003) Knowing your ancestors: themes in the history of evo-devo. Evol Dev 5:327–330PubMedCrossRefGoogle Scholar
  68. Matsuda R (1987) Animal evolution in changing environments with special reference to abnormal metamorphosis. Wiley, New YorkGoogle Scholar
  69. Mayr E (1963) Animal species and evolution. Harvard University Press, CambridgeGoogle Scholar
  70. Mayr E, Provine WB (eds) (1980) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, CambridgeGoogle Scholar
  71. Mocek R (1974) Wilhelm Roux—Hans Driesch. Zur Geschichte der Entwicklungsphysiologie der Tiere. Gustav Fischer, JenaGoogle Scholar
  72. Mocek R (1998) Die werdende Form. Eine Geschichte der kausalen Morphologie. Basilisken-Presse, MarburgGoogle Scholar
  73. Moczek AP (2008) On the origins of novelty in development and evolution. BioEssays 30:432–447PubMedCrossRefGoogle Scholar
  74. Müller F (1864) Für Darwin. Wilhelm Engelmann, LeipzigGoogle Scholar
  75. Müller GB (2007) Evo-devo: extending the evolutionary synthesis. Nat Rev Genet 8:943–949PubMedCrossRefGoogle Scholar
  76. Müller GB, Wagner GP (1991) Novelty in evolution: restructuring the concept. Ann Rev Ecolog Syst 22:229–256CrossRefGoogle Scholar
  77. Nielsen C (2001) Animal evolution: interrelationships of the living phyla, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  78. Nielsen C, Nørrevang A (1985) The trochaea theory: an example of life cycle phylogeny. In: Conway S, Morris JDG, Gibson R, Platts HM (eds) The origin and relationships of lower invertebrates. Oxford University Press, Oxford, pp 28–41Google Scholar
  79. Nöthlich R, Wetzel N, Hoßfeld U, Olsson L (2006) “Ich acquirierte das Schwein sofort, ließ nach dem Niederstechen die Pfoten abhacken u. schickte dieselben an Darwin”—der Briefwechsel von Otto Zacharias mit Ernst Haeckel (1874–1898). Ann Hist Philos Biol 11:177–248Google Scholar
  80. Olsson L (2007) A clash of traditions: the history of comparative and experimental embryology in Sweden as exemplified by the research of Gösta Jägersten and Sven Hörstadius. Theory Biosci 126:117–129PubMedCrossRefGoogle Scholar
  81. Olsson L, Hoßfeld U (2007) Die Entwicklung: Die Zeit des Lebens. Ausgewählte Themen zur Geschichte der Entwicklungsbiologie. In: Höxtermann E, Hilger H (eds) Lebenswissen. Eine Einführung in die Geschichte der Biologie. Natur & Text, Rangsdorf, pp 218–243Google Scholar
  82. Olsson L, Hoßfeld U, Breidbach O (2006) From evolutionary morphology to the modern synthesis and “evo-devo”: historical and contemporary perspectives. Theory Biosci 124:259–263CrossRefGoogle Scholar
  83. Olsson L, Hoßfeld U, Breidbach O (2009) Preface: between Ernst Haeckel and the homeobox: the role of developmental biology in explaining evolution. Theory Biosci 128:1–5PubMedCrossRefGoogle Scholar
  84. Peters DS (1980) Das biogenetische Grundgesetz—Vorgeschichte und Folgerungen. Medizinhist J 15:57–69PubMedGoogle Scholar
  85. Pigliucci M (2008) What, if anything, is an evolutionary novelty? Philos Sci 75:887–898CrossRefGoogle Scholar
  86. Pigliucci M, Müller GB (eds) (2010) Evolution: the extended synthesis. MIT, CambridgeGoogle Scholar
  87. Raff R (1996) The shape of life: genes, development, and the evolution of animal form. Chicago University Press, ChicagoGoogle Scholar
  88. Raff RA, Love AC (2004) Kowalevsky, comparative evolutionary embryology, and the intellectual lineage of evo-devo. J Exp Zool B Mol Dev Evol 302:19–34PubMedGoogle Scholar
  89. Raff RA, Arthur W, Carroll SB, Coates MI, Wray G (1999) Chronicling the birth of a discipline. Evol Dev 1:1–2PubMedCrossRefGoogle Scholar
  90. Rasskin-Gutman D, De Renzi M (eds) (2009) Pere Alberch. The creative trajectory of an evo-devo. Publicaciones de la Universidad de Valencia, ValenciaGoogle Scholar
  91. Rehkämpfer G (1997) Zur frühen Rezeption von Darwins Selektionstheorie und deren Folgen für die vergleichende Morphologie heute. Sudhoffs Arch 81:171–192Google Scholar
  92. Reif W-E, Junker T, Hoßfeld U (2000) The synthetic theory of evolution: general problems and the German contribution to the synthesis. Theory Biosci 119:41–91Google Scholar
  93. Riedl R (1978) Order in living organisms: a systems analysis of evolution. Wiley, New YorkGoogle Scholar
  94. Schlosser G (2002) Modularity and the units of evolution. Theory Biosci 121:1–80CrossRefGoogle Scholar
  95. Schlosser G, Wagner GP (eds) (2004) Modularity in development and evolution. University of Chicago Press, ChicagoGoogle Scholar
  96. Schmalgausen II (1983) Izbrannyje trudy. Puti i zakonomernosti evoliutzionnogo prozessa. Nauka, MoscowGoogle Scholar
  97. Schmalgausen II (1988) Ivan Ivanovich Schmalhausen (1884–1963). Nauka, MoscowGoogle Scholar
  98. Schmalhausen II (1938) Organizm kak tseloje v individual’nom i istoricheskom razvitii. Akademy Nauka SSSR, LeningradGoogle Scholar
  99. Schmalhausen II (1946) Faktory Evoliutzii. Akademy Nauka SSSR, LeningradGoogle Scholar
  100. Schmalhausen II (1949) Factors of evolution: the theory of stabilizing selection. Blakiston (reprinted in 1986 by Chicago Univ. Press), PhiladelphiaGoogle Scholar
  101. Schmalhausen II (1968) The origin of terrestrial vertebrates. Academic, New YorkGoogle Scholar
  102. Schmalhausen II (1969) Problemy darwinizma. Nauka, LeningradGoogle Scholar
  103. Schmalhausen II (1990) Voprosy darwinisma. Neopublikovannyje raboty. Nauka, MoscowGoogle Scholar
  104. Schwenk K, Wagner GP (2003) Constraint. In: Hall BK, Olson WM (eds) Keywords and concepts in evolutionary developmental biology. Harvard University Press, Cambridge, pp 53–61Google Scholar
  105. Sewertzoff AN (1929) Directions of evolution. Acta Zool 10:59–141CrossRefGoogle Scholar
  106. Sewertzoff AN (1931) Morphologische Gesetzmäßigkeiten der Evolution. Gustav Fischer, JenaGoogle Scholar
  107. Sewertzoff AN (1949) Sobranije sotchinenij. V. 5. Izd. Akad. Nauk, MoscowGoogle Scholar
  108. Sommer RJ (2009) The future of evo-devo: model systems and evolutionary theory. Nat Rev Genet 10:416–422PubMedGoogle Scholar
  109. Starck D (1965) Vergleichende Anatomie der Wirbeltiere von Gegenbaur bis heute. Verh. Dtsch. Zool. Ges. in Jena (1965):51–67Google Scholar
  110. Stern DL, Orgogozo V (2008) The loci of evolution: how predictable is genetic evolution? Evolution 62:2155–2177PubMedCrossRefGoogle Scholar
  111. Timoféeff-Ressovsky NW (1939) Genetik und Evolution (Bericht eines Zoologen). Z Indukt Abstamm Vererbungsl 76:158–219CrossRefGoogle Scholar
  112. Timoféeff-Ressovsky NW, Voroncov NN, Jablokov AV (1975) Kurzer Grundriss der Evolutionstheorie. VEB Gustav Fischer, JenaGoogle Scholar
  113. Trienes R (1989) Type concept revisited: a survey of German idealistic morphology in the first half of the twentieth century. Hist Philos Life Sci 11:23–42Google Scholar
  114. Ulrich W (1968) Ernst Haeckel: ‘Generelle Morphologie’, 1866 (Fortsetzung und Schluß). Zool Beitr N F 14:213–311Google Scholar
  115. Uschmann G (1953) Einige Bemerkungen zu Haeckels biogenetischem Grundgesetz. Urania 16:131–138Google Scholar
  116. Uschmann G (1959) Geschichte der Zoologie und der zoologischen Anstalten in Jena 1779–1919. Gustav Fischer, JenaGoogle Scholar
  117. Uschmann G (1966) 100 Jahre ‘Generelle Morphologie’. Biol Rundsch 5:241–252Google Scholar
  118. von Dassow G, Munro E (1999) Modularity in animal development and evolution: elements of a conceptual framework for evodevo. J Exp Zool 285:307–325CrossRefGoogle Scholar
  119. Waddington CH (1975) The evolution of an evolutionist. Cornell University Press, IthacaGoogle Scholar
  120. Wagner GP, Larsson HC (2003) What is the promise of developmental evolution? III. The crucible of developmental evolution. J Exp Zool B Mol Dev Evol 300:1–4PubMedGoogle Scholar
  121. Wagner GP, Laubichler MD (2004) Rupert Riedl and the re-synthesis of evolutionary and developmental biology: body plans and evolvability. J Exp Zool B Mol Dev Evol 302B:92–102CrossRefGoogle Scholar
  122. Wagner GP, Lynch VJ (2009) Evolutionary novelties. Curr Biol 20:R48–R52CrossRefGoogle Scholar
  123. Wake DB (1996) Schmalhausen’s evolutionary morphology and its value in formulating research strategies. In: Systematic biology as an historical science. Memorie della società Italiana di scienze naturali e del museo civico di storia naturale di Milano, vol 27, pp 129–132Google Scholar
  124. Wallace B (1986) Can embryologists contribute to an understanding of evolutionary mechanisms? In: Bechtel W (ed) Integrating scientific disciplines. M. Nijhoff, Dordrecht, pp 149–163Google Scholar
  125. Weindling P (1991) Darwinism and social darwinism in imperial Germany: the contribution of the cell biologist Oscar Hertwig (1849–1922). Gustav Fischer, StuttgartGoogle Scholar
  126. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford and New YorkGoogle Scholar
  127. Wimsatt WC (1986) Developmental constraints, generative entrenchment, and the innate–acquired distinction. In: Bechtel W (ed) Integrating scientific disciplines. M. Nijhoff, Dordrecht, pp 185–208Google Scholar
  128. Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8:206–216PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Lennart Olsson
    • 1
  • Georgy S. Levit
    • 2
    • 3
  • Uwe Hoßfeld
    • 3
  1. 1.Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem MuseumFriedrich-Schiller-UniversitätJenaGermany
  2. 2.History of Science & Technology Prog.University of King’s CollegeHalifaxCanada
  3. 3.AG BiologiedidaktikFriedrich-Schiller-UniversitätJenaGermany

Personalised recommendations