Advertisement

Naturwissenschaften

, Volume 97, Issue 9, pp 819–826 | Cite as

Variations of immune parameters in terrestrial isopods: a matter of gender, aging and Wolbachia

  • Mathieu Sicard
  • Frédéric Chevalier
  • Mickaël De Vlechouver
  • Didier Bouchon
  • Pierre Grève
  • Christine Braquart-Varnier
Original Paper

Abstract

Ecological factors modulate animal immunocompetence and potentially shape the evolution of their immune systems. Not only environmental parameters impact on immunocompetence: Aging is one major cause of variability of immunocompetence between individuals, and sex-specific levels of immunocompetence have also been frequently described. Moreover, a growing core of data put in light that vertically transmitted symbionts can dramatically modulate the immunocompetence of their hosts. In this study, we addressed the influence of gender, age and the feminising endosymbiont Wolbachia (wVulC) on variations in haemocyte density, total PO activity and bacterial load in the haemolymph of the terrestrial isopod Armadillidium vulgare. This host–symbiont system is of particular interest to address this question since: (1) wVulC was previously shown as immunosuppressive in middle-aged females and (2) wVulC influences sex determination. We show that age, gender and Wolbachia modulate together immune parameters in A. vulgare. However, wVulC, which interacts with aging, appears to be the prominent factor interfering with both PO activity and haemocyte density. This interference with immune parameters is not the only aspect of wVulC virulence on its host, as reproduction and survival are also altered.

Keywords

Isopod crustacean Wolbachia Aging Gender Phenoloxidase Haemocyte Immunocompetence 

Notes

Acknowledgements

We thank Sébastien Moreau for advice in adapting PO measurement to terrestrial isopods and Maryline Raimond for technical assistance. We thank Richard Cordaux, Jessica Dittmer and three anonymous referees for their comments on a previous version of this manuscript. This research was funded by the CNRS, the Université de Poitiers and the Agence Nationale de la Recherche (EndoSymbArt ANR-06-BLAN-0316).

References

  1. Bouchon D, Cordaux R, Grève P (2008) Feminizing Wolbachia and the evolution of sex determination in isopods. In: Bourtzis K, Miller T (eds) Insect Symbiosis. pp. 273–294.Google Scholar
  2. Box EP, Cox DR (1964) An analysis of transformations. J R Stat Soc B 26(2):211–252Google Scholar
  3. Braquart-Varnier C, Lachat M, Herbiniere J, Johnson M, Caubet Y, Bouchon D, Sicard M (2008) Wolbachia mediate variation of host immunocompetence. PLoS One 3(9):e3286CrossRefPubMedGoogle Scholar
  4. Brennan LJ, Keddie BA, Braig HR, Harris HL (2008) The endosymbiont Wolbachia pipientis induces the expression of host antioxidant proteins in an Aedes albopictus cell line. PLoS One 3(5):e2083CrossRefPubMedGoogle Scholar
  5. Cerenius L, Lee BL, Soderhall K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29(6):263–271CrossRefPubMedGoogle Scholar
  6. Cerenius L, Babu R, Soderhall K, Jiravanichpaisal P (2010) In vitro effects on bacterial growth of phenoloxidase reaction products. J Invertebr Pathol 103(1):21–23CrossRefPubMedGoogle Scholar
  7. Cordaux R, Michel-Salzat A, Frelon-Raimond M, Rigaud T, Bouchon D (2004) Evidence for a new feminizing Wolbachia strain in the isopod Armadillidium vulgare: evolutionary implications. Heredity 93(1):78–84, 6800482CrossRefPubMedGoogle Scholar
  8. DeVeale B, Brummel T, Seroude L (2004) Immunity and aging: the enemy within? Aging Cell 3(4):195–208CrossRefPubMedGoogle Scholar
  9. Evans O, Caragata EP, McMeniman CJ, Woolfit M, Green DC, Williams CR, Franklin CE, O’Neill SL, McGraw EA (2009) Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis. J Exp Biol 212(Pt 10):1436–1441CrossRefPubMedGoogle Scholar
  10. Fagutao FF, Koyama T, Kaizu A, Saito-Taki T, Kondo H, Aoki T, Hirono I (2009) Increased bacterial load in shrimp hemolymph in the absence of prophenoloxidase. FEBS J 276(18):5298–5306CrossRefPubMedGoogle Scholar
  11. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247CrossRefPubMedGoogle Scholar
  12. Fytrou A, Schofield PG, Kraaijeveld AR, Hubbard SF (2006) Wolbachia infection suppresses both host defence and parasitoid counter-defence. Proc Biol Sci 273(1588):791–796CrossRefPubMedGoogle Scholar
  13. Gross R, Vavre F, Heddi A, Hurst GD, Zchori-Fein E, Bourtzis K (2009) Immunity and symbiosis. Mol Microbiol 73(5):751–759CrossRefPubMedGoogle Scholar
  14. Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322(5902):702CrossRefPubMedGoogle Scholar
  15. Herbiniere J, Braquart-Varnier C, Greve P, Strub JM, Frere J, Van Dorsselaer A, Martin G (2005) Armadillidin: a novel glycine-rich antibacterial peptide directed against gram-positive bacteria in the woodlouse Armadillidium vulgare (Terrestrial Isopod, Crustacean). Dev Comp Immunol 29(6):489–499. doi: 10.1016/j.dci.2004.11.001 CrossRefPubMedGoogle Scholar
  16. Herbiniere J, Greve P, Strub JM, Thierse D, Raimond M, van Dorsselaer A, Martin G, Braquart-Varnier C (2008) Protein profiling of hemocytes from the terrestrial crustacean Armadillidium vulgare. Dev Comp Immunol 32(8):875–882. doi: 10.1016/j.dci.2008.01.007 CrossRefPubMedGoogle Scholar
  17. Jaenicke E, Fraune S, May S, Irmak P, Augustin R, Meesters C, Decker H, Zimmer M (2009) Is activated hemocyanin instead of phenoloxidase involved in immune response in woodlice? Dev Comp Immunol 33(10):1055–1063CrossRefPubMedGoogle Scholar
  18. Juchault P, Legrand JJ, Martin G (1974) Action interspécifique du facteur épigénétique féminisant responsable de la thélygénie et de l’intersexualité du Crustacé Armadillidium vulgare (Isopode Oniscoïde). Ann Embryol Morphog 7(3):265–276Google Scholar
  19. Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200CrossRefPubMedGoogle Scholar
  20. Kremer N, Voronin D, Charif D, Mavingui P, Mollereau B, Vavre F (2009). Wolbachia interferes with ferritin expression and iron metabolism in insects. PLoS Pathog 5(10)Google Scholar
  21. Kurtz J, Sauer KP (2001) Gender differences in phenoloxidase activity of Panorpa vulgaris hemocytes. J Invertebr Pathol 78(1):53–55CrossRefPubMedGoogle Scholar
  22. Kurtz J, Wiesner A, Gotz P, Sauer KP (2000) Gender differences and individual variation in the immune system of the scorpionfly Panorpa vulgaris (Insecta: Mecoptera). Dev Comp Immunol 24(1):1–12CrossRefPubMedGoogle Scholar
  23. Leclerc V, Pelte N, El Chamy L, Martinelli C, Ligoxygakis P, Hoffmann JA, Reichhart JM (2006) Prophenoloxidase activation is not required for survival to microbial infections in Drosophila. EMBO Rep 7(2):231–235CrossRefPubMedGoogle Scholar
  24. Liu H, Jiravanichpaisal P, Cerenius L, Lee BL, Soderhall I, Soderhall K (2007) Phenoloxidase is an important component of the defense against Aeromonas hydrophila Infection in a crustacean, Pacifastacus leniusculus. J Biol Chem 282(46):33593–33598CrossRefPubMedGoogle Scholar
  25. Martin G, Juchault P, Legrand JJ (1973) Mise en évidence d’un micro-organisme intracytoplasmique symbiote de l’Oniscoide Armadillidium vulgare L. dont la présence accompagne l’intersexualité ou la féminisation totale des mâles génétiques de la lignée thélygène. C R Acad Sci III 276:2313–2316Google Scholar
  26. May RC (2007) Gender, immunity and the regulation of longevity. Bioessays 29(8):795–802CrossRefPubMedGoogle Scholar
  27. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O'Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139(7):1268–1278CrossRefPubMedGoogle Scholar
  28. Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci USA 102(36):12795–12800CrossRefPubMedGoogle Scholar
  29. Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc Biol Sci 275(1632):293–299CrossRefPubMedGoogle Scholar
  30. Oliver KM, Degnan PH, Hunter MS, Moran NA (2009) Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325(5943):992–994CrossRefPubMedGoogle Scholar
  31. Osborne SE, Leong YS, O’Neill SL, Johnson KN (2009) Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans. PLoS Pathog 5(11)Google Scholar
  32. Radhika A, Abdul Nazar AK, Munuswamy N, Nellaiappan K (1998) Sex-linked in phenol oxidase in the fairy shrimp Streptocephalus dichotomus Baird and their possible role (Crustacea: Anostraca). Hydrobiologia 377:161–164CrossRefGoogle Scholar
  33. Ramsden S, Cheung YY, Seroude L (2008) Functional analysis of the Drosophila immune response during aging. Aging Cell 7(2):225–236CrossRefPubMedGoogle Scholar
  34. Rigaud T, Moret Y (2003) Differential phenoloxidase activity between native and invasive gammarids infected by local acanthocephalans: differential immunosuppression? Parasitology 127(Pt 6):571–577CrossRefPubMedGoogle Scholar
  35. Rigaud T, Souty Grosset C, Raimond R, Mocquard JP, Juchault P (1991) Feminizing endocytobiosis in the terrestrial crustacean Armadillidium vulgare Latr. (Isopoda): Recent acquisitions. Endocytobiosis Cell Res 7:259–273Google Scholar
  36. Roberts ML, Buchanan KL, Evans ML (2004) Testing the immunocompetence handicap hypothesis: a review of the evidence. Anim Behav 68:227–239CrossRefGoogle Scholar
  37. Rolff J (2001) Effect of age and gender on immune function of dragonflies (Odonata, Lestidae) from a wild population. Can J Zool 79:2176–2180CrossRefGoogle Scholar
  38. Saridaki A, Bourtzis K (2009) Wolbachia: more than just a bug in insects genitals. Curr Opin Microbiol 13(1):67–72CrossRefPubMedGoogle Scholar
  39. Scarborough CL, Ferrari J, Godfray HC (2005) Aphid protected from pathogen by endosymbiont. Science 310(5755):1781CrossRefPubMedGoogle Scholar
  40. Schulenburg H, Kurtz J, Moret Y, Siva-Jothy MT (2009) Introduction. Ecological immunology. Philos Trans R Soc Lond B Biol Sci 364(1513):3–14CrossRefPubMedGoogle Scholar
  41. Sizemore RK, Colwell R, Tubiash HS, Lovelace TE (1975) Bacterial flora of the hemolymph of the blue crab, Callinected sapidus: numerical taxonomy. Appl Microbiol (19):393–399Google Scholar
  42. Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6(12)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Mathieu Sicard
    • 1
  • Frédéric Chevalier
    • 1
  • Mickaël De Vlechouver
    • 1
  • Didier Bouchon
    • 1
  • Pierre Grève
    • 1
  • Christine Braquart-Varnier
    • 1
  1. 1.Laboratoire Ecologie, Evolution, Symbiose, UMR CNRS 6556Université de PoitiersPoitiers cedexFrance

Personalised recommendations