Naturwissenschaften

, Volume 97, Issue 8, pp 743–751 | Cite as

The unusual mineral vaterite in shells of the freshwater bivalve Corbicula fluminea from the UK

  • Nicole Spann
  • Elizabeth M. Harper
  • David C. Aldridge
Original Paper

Abstract

Asian clams (Corbicula fluminea) with abnormally thickened shell valves were found in four rivers in the UK (Rivers Yare, Waveney, Thames and New Bedford River). The material making up these malformations was the rare calcium carbonate polymorph vaterite. Vaterite is seldom found in the natural environment because it is less stable than the other calcium carbonate polymorphs (aragonite and calcite). In the few reported cases of vaterite formation in molluscs, it is usually related to unusual biomineralisation events such as shell regeneration, pearls and initial stages of shell formation. We compared two populations from the Rivers Yare and Waveney in the Norfolk Broads, UK, one (River Waveney) displaying dominantly the normal Corbicula shell form with aragonitic shells. In the River Yare population, all individuals sampled had shell deformations to different extents. These deformations were apparent as bulges on the inside of the ventral shell margin. X-ray diffraction confirmed that the shell material in the bulges of recently collected clams was vaterite. Other parts of the deformed shells were aragonitic. The shell deformations alter the shell morphology, leading to higher and wider shells. The shell microstructure is fibrous in the vateritic parts and crossed-lamellar in the aragonitic parts of deformed or non-deformed shells. The cause for the malformations is probably a disrupted biomineralisation process in the bivalves. Fossil Corbicula specimens from the late Pleistocene had similar deformations, suggesting that this is not a response to anthropogenic causes, such as pollution.

Keywords

Vaterite Biomineralisation Shell formation Corbicula fluminea Shell deformation 

References

  1. Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Nat Acad Sci USA 82:4110–4114CrossRefPubMedGoogle Scholar
  2. Albright JN (1971) Vaterite stability. Am Mineral 56:620–624Google Scholar
  3. Alzieu C, Heral T, Thibaud Y, Dardignac MJ, Feuillet M (1982) Influence des peintures antisalissures sur la calcification de la coquille de l'huitre Crassostrea gigas. Rev Trav Inst Pêches marit 45:101–116Google Scholar
  4. Behrens G, Kuhn LT, Ubic R, Heuer AH (1995) Raman spectra of vateritic calcium carbonate. Spectros Lett 28:983–995CrossRefGoogle Scholar
  5. Birkett JW, Noreng JMK, Lester JN (2002) Spatial distribution of mercury in the sediments and riparian environment of the River Yare, Norfolk, UK. Environ Pollut 116:65–74CrossRefPubMedGoogle Scholar
  6. Bubb JM, Rudd T, Lester JN (1991a) Distribution of heavy metals in the River Yare and its associated Broads I. Mercury and methylmercury. Sci Total Environ 102:147–168CrossRefGoogle Scholar
  7. Bubb JM, Rudd T, Lester JN (1991b) Distribution of heavy metals in the River Yare and its associated Broads II. Copper and cadmium. Sci Total Environ 102:169–188CrossRefGoogle Scholar
  8. Bubb JM, Rudd T, Lester JN (1991c) Distribution of heavy metals in the River Yare and its associated Broads III. Lead and zinc. Sci Total Environ 102:189–208CrossRefGoogle Scholar
  9. Carter JG (1980) Environmental and biological controls of bivalve shell mineralogy and microstructure. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms: biological records of environmental change. Plenum, New York, pp 69–113Google Scholar
  10. Coelho MR, Langston WJ, Bebianno MJ (2006) Effect of TBT on Ruditapes decussatus juveniles. Chemosphere 63:1499–1505CrossRefPubMedGoogle Scholar
  11. Counts CL, Prezant RS (1982) Shell microstructure of Corbicula fluminea (Bivalvia: Corbiculidae). Nautilus 96:25–30Google Scholar
  12. Dame RF (1972) The ecological energies of growth, respiration and assimilation in the intertidal American oyster Crassostrea virginica. Mar Biol 17:243–250CrossRefGoogle Scholar
  13. Dowson PH, Pershke D, Bubb JM, Lester JN (1992) Spatial distribution of organotins in sediments of lowland river catchments. Environ Pollut 76:259–266CrossRefPubMedGoogle Scholar
  14. Elliott P, zu Ermgassen PSE (2008) The Asian clam (Corbicula fluminea) in the River Thames, London, England. Aquat Inv 3:54–60CrossRefGoogle Scholar
  15. Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271:67–69CrossRefGoogle Scholar
  16. Falini G, Fermani S, Vanzo S, Miletic M, Zaffino G (2005) Influence on the formation of aragonite or vaterite by otolith macromolecules. Eur J Inorg Chem 2005:162–167CrossRefGoogle Scholar
  17. Falini G, Fermani S, Tosi G, Dinelli E (2009) Calcium carbonate morphology and structure in the presence of seawater ions and humic acids. Cryst Growth Des 9:2065–2072CrossRefGoogle Scholar
  18. Gauldie RW (1993) Polymorphic crystalline structure of fish otoliths. J Morphol 218:1–28CrossRefGoogle Scholar
  19. Glover C, Kidwell SM (1993) Influence of organic matrix on the post-mortem destruction of molluscan shells. J Geol 101:729–747CrossRefGoogle Scholar
  20. Grasby SE (2003) Naturally precipitating vaterite (μ-CaCO3) spheres: unusual carbonates formed in an extreme environment. Geochim Cosmochim Acta 67:1659–1666CrossRefGoogle Scholar
  21. Hall A, Taylor JD (1971) The occurrence of vaterite in gastropod egg-shells. Mineral Mag 38:521–522CrossRefGoogle Scholar
  22. Hasse B, Ehrenberg H, Marxen JC, Becker W, Epple M (2000) Calcium carbonate modifications in the mineralized shell of the freshwater snail Biomphalaria glabrata. Chem Eur J 6:3679–3685CrossRefGoogle Scholar
  23. Hayashi S, Ohkawa K, Suwa Y, Sugawara T, Asami T, Yamamoto H (2008) Fibrous and helical calcite crystals induced by synthetic polypeptides containing O-phospho-L-serine and O-phospho-L-threonine. Macromol Biosci 8:46–59CrossRefPubMedGoogle Scholar
  24. Higuera-Ruiz R, Elorza J (2009) Biometric, microstructural, and high-resolution trace element studies in Crassostrea gigas of Cantabria (Bay of Biscay, Spain): anthropogenic and seasonal influences. Estuar Coast Shelf S 82:201–213CrossRefGoogle Scholar
  25. Hoare DJ (2007) Ecological change in shallow lakes through antifoulant biocide contamination. Dissertation, University College LondonGoogle Scholar
  26. Howlett D, Baker R (1999) Corbicula fluminea (Müller): new to UK. J Conchol 36:83Google Scholar
  27. Jacob DE, Soldati AL, Wirth R, Huth J, Wehrmeister U, Hofmeister W (2008) Nanostructure, composition and mechanisms of bivalve shell growth. Geochim Cosmochim Acta 72:5401–5415CrossRefGoogle Scholar
  28. Kamhi SR (1963) On the structure of vaterite, CaCO3. Acta Crystallogr 16:770–772CrossRefGoogle Scholar
  29. Kessel E (1933) Über die Schale von Viviparus viviparus L. und Viviparus fasciatus Müll. Ein Beitrag zum Strukturproblem der Gastropodenschale. Z Morphol Oekol Tiere 27:129–198CrossRefGoogle Scholar
  30. Kralj D, Brečević L, Nielsen AE (1990) Vaterite growth and dissolution in aqueous solution I. Kinetics of crystal growth. J Cryst Growth 104:793–800CrossRefGoogle Scholar
  31. Kralj D, Brečević L, Kontrec J (1997) Vaterite growth and dissolution in aqueous solution III. Kinetics of transformation. J Cryst Growth 177:248–257CrossRefGoogle Scholar
  32. Lakshminarayanan R, Chi-Jin EO, Loh XJ, Kini RM, Valiyaveettil S (2005) Purification and characterization of a vaterite-inducing peptide, pelovaterin, from the eggshells of Pelodiscus sinensis (Chinese soft-shelled turtle). Biomacromolecules 6:1429–1437CrossRefPubMedGoogle Scholar
  33. Leonard GH, Bertness MD, Yund PO (1999) Crab predation, waterborne cues, and inducible defenses in the blue mussel, Mytilus edulis. Ecology 80:1–14Google Scholar
  34. Lippmann F (1973) Sedimentary carbonate minerals. Springer, BerlinGoogle Scholar
  35. Lomovasky BJ, Gutiérrez JL, Iribarne OO (2005) Identifying repaired shell damage and abnormal calcification in the stout razor clam Tagelus plebeius as a tool to investigate its ecological interactions. J Sea Res 54:163–175CrossRefGoogle Scholar
  36. Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131CrossRefPubMedGoogle Scholar
  37. Lowenstam HA, Abbott DP (1975) Vaterite: a mineralization product of the hard tissues of a marine organism (Ascidiacea). Science 188:363–365CrossRefPubMedGoogle Scholar
  38. Lucas D, Andrews JE (1996) A re-examination of reported lacustrine vaterite formation in Holkham Lake, Norfolk, UK. J Sediment Res 66:474–476Google Scholar
  39. Ma HY, Lee IS (2006) Characterization of vaterite in low quality freshwater-cultured pearls. Mater Sci Engin C 26:721–723CrossRefGoogle Scholar
  40. Ma H, Su A, Zhang B, Li RK, Zhou L, Wang B (2009) Vaterite or aragonite observed in the prismatic layer of freshwater-cultured pearls from South China. Progr Nat Sci 19:817–820CrossRefGoogle Scholar
  41. Machado J, Coimbra J, Sã C (1989) Shell thickening in Anodonta cygnea by TBTO treatments. Comp Biochem Physiol C Comp Pharmacol 92:77–80CrossRefGoogle Scholar
  42. Mackie GL (1978) Shell structure in freshwater Sphaeriaceae (Bivalvia: Heterodonta). Can J Zool 56:1–6CrossRefGoogle Scholar
  43. Mayer FK (1931) Röntgenographische Untersuchungen an Gastropodenschalen. Jena Zeitschr Naturwiss 65:487–513Google Scholar
  44. McMahon RF (1983) Ecology of an invasive pest bivalve, Corbicula. In: Russell-Hunter WD (ed) The Mollusca. Academic, London, pp 505–561Google Scholar
  45. Meenakshi VR, Blackwelder PL, Watabe N (1974) Studies on the formation of calcified egg-capsules of ampullarid snails. Calcif Tissue Int 16:283–291CrossRefGoogle Scholar
  46. Melancon S, Fryer BJ, Ludsin SA, Gagnon JE, Yang Z (2005) Effects of crystal structure on the uptake of metals by lake trout (Salvelinus namaycush) otoliths. Can J Fish Aquat Sci 62:2609–2619CrossRefGoogle Scholar
  47. Morat F, Betoulle S, Robert M, Thailly AF, Biagianti-Risbourg S, Lecomte-Finiger R (2008) What can otolith examination tell us about the level of perturbations of Salmonid fish from the Kerguelen Islands? Ecol Freshwat Fish 17:617–627CrossRefGoogle Scholar
  48. Müller SJ (2003) Ecology and impacts of the non-indigenous Asian clam Corbicula fluminea (Müller, 1774) in Britain. Dissertation, University of CambridgeGoogle Scholar
  49. Page DS, Dassanayake TM, Gilfillan ES (1996) Relationship between tissue concentrations of tributyltin and shell morphology in field populations of Mytilus edulis. Bull Environ Contam Toxicol 56:500–504CrossRefPubMedGoogle Scholar
  50. Palchik NA, Moroz TN (2005) Polymorph modifications of calcium carbonate in gallstones. J Cryst Growth 283:450–456CrossRefGoogle Scholar
  51. Perić J, Vučak M, Krstulović R, Brečević L, Kralj D (1996) Phase transformation of calcium carbonate polymorphs. Thermochim Acta 277:175–186CrossRefGoogle Scholar
  52. Plummer LN, Busenberg E (1982) The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochim Cosmochim Acta 46:1011–1040CrossRefGoogle Scholar
  53. Pokroy B, Zolotoyabko E, Adir N (2006) Purification and functional analysis of a 40 kD protein extracted from the Strombus decorus persicus mollusk shells. Biomacromolecules 7:550–556CrossRefPubMedGoogle Scholar
  54. Preece RC, Meijer T (2000) A review of the occurrence of Corbicula in the Pleistocene of north-west Europe. Geol Mijnbouw—NJG 79:241–255Google Scholar
  55. Prezant RS, Tan-Tiu A (1985) Comparative shell microstructure of North American Corbicula (Bivalvia: Sphaeriacea). Veliger 27:312–319Google Scholar
  56. Prince JS, Lynn MJ, Blackwelder PL (2006) White vesicles in the skin of Aplysia californica Cooper: a proposed excretory function. J Mollus Stud 72:405–412CrossRefGoogle Scholar
  57. Qiao L, Feng QL, Li Z (2007) Special vaterite found in freshwater lacklustre pearls. Cryst Growth Des 7:275–279CrossRefGoogle Scholar
  58. Qiao L, Feng QL, Liu Y (2008) A novel bio-vaterite in freshwater pearls with high thermal stability and low dissolubility. Mater Lett 62:1793–1796CrossRefGoogle Scholar
  59. Rodhouse PG (1977) An improved method for measuring volume of bivalves. Aquaculture 11:279–280CrossRefGoogle Scholar
  60. Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A, Gonzalez-Muñoz MT, Rodriguez-Gallego M (2007) Bacterially mediated mineralization of vaterite. Geochim Cosmochim Acta 71:1197–1213CrossRefGoogle Scholar
  61. Rowlands DLG, Webster RK (1971) Precipitation of vaterite in lake water. Nat Phys Sc 229:158Google Scholar
  62. Saleuddin ASM, Wilbur KM (1969) Shell regeneration in Helix pomatia. Can J Zool 47:51–53CrossRefGoogle Scholar
  63. Simon A, Poulicek M, Velimirov B, MacKenzie FT (1994) Comparison of anaerobic and aerobic biodegradation of mineralized skeletal structures in marine and estuarine conditions. Biogeochemistry 25:167–195CrossRefGoogle Scholar
  64. Sokolowski A, Fichet D, Garcia-Meunier P, Radenac G, Wolowicz MJ, Blanchard G (2002) The relationship between metal concentrations and phenotypes in the Baltic clam Macoma balthica (L.) from the Gulf of Gdansk, Southern Baltic. Chemosphere 47:475–484CrossRefPubMedGoogle Scholar
  65. Soldati AL, Jacob DE, Wehrmeister U, Hofmeister W (2008) Structural characterization and chemical composition of aragonite and vaterite in freshwater cultured pearls. Mineral Mag 72:579–592CrossRefGoogle Scholar
  66. Sparks BW, West RG (1970) Late Pleistocene deposits at Wretton, Norfolk. I. Ipswichian interglacial deposits. Phil Trans Roy Soc Lond B 258:1–30CrossRefGoogle Scholar
  67. Strayer DL (2008) A new widespread morphological deformity in freshwater mussels from New York. Northeast Nat 15:149–151CrossRefGoogle Scholar
  68. Sutor DJ, Wooley SE (1968) Gallstone of unusual composition: calcite, aragonite and vaterite. Science 159:1113–1114CrossRefPubMedGoogle Scholar
  69. Taylor JD, Kennedy WJ, Hall A (1973) The shell structure and mineralogy of the bivalvia: II. Lucinacea–Clavagellacea conclusions. Bull Br Mus Nat Hist Zool 22:253–294Google Scholar
  70. Trussell GC, Smith LD (2000) Induced defenses in response to an invading crab predator: an explanation of historical and geographic phenotypic change. Proc Nat Acad Sci USA 97:2123–2127CrossRefPubMedGoogle Scholar
  71. Vecht A, Ireland TG (2000) The role of vaterite and aragonite in the formation of pseudo-biogenic carbonate structures: implications for Martian exobiology. Geochim Cosmochim Acta 64:2719–2725CrossRefPubMedGoogle Scholar
  72. Waite ME, Evans KE, Thain JE, Waldock MJ (1989) Organotin concentrations in the Rivers Bure and Yare, Norfolk Broads, England. Appl Organomet Chem 3:383–391CrossRefGoogle Scholar
  73. Wang J, Becker U (2009) Structure and carbonate orientation of vaterite (CaCO3). Am Mineral 94:380–386CrossRefGoogle Scholar
  74. Watabe N (1983) Shell repair. In: Wilbur KM, Saleuddin ASM (eds) The Mollusca. Academic, London, pp 289–316Google Scholar
  75. Watabe N, Meenakshi VR, Blackwelder PL, Kurtz EM, Dunkelberger DG (1976) Calcareous spherules in the gastropod Pomacea paludosa. In: Watabe N, Wilbur KM (eds) Mechanisms of mineralization in the invertebrates and plants. University South Carolina Press, Columbia, pp 283–308Google Scholar
  76. Wehrmeister U, Jacob DE, Soldati AL, Häger T, Hofmeister W (2007) Vaterite in freshwater cultured pearls from China and Japan. J Gemmol 31:269–276Google Scholar
  77. Wilbur KM, Saleuddin ASM (1983) Shell formation. In: Wilbur KM, Saleuddin ASM (eds) The Mollusca. Academic, London, pp 236–287Google Scholar
  78. Wilbur KM, Watabe N (1963) Experimental studies on calcification in molluscs and the alga Coccolithus huxleyi. Ann NY Acad Sci 109:82–112CrossRefPubMedGoogle Scholar
  79. Willing MJ (2007) Sphaerium solidum and Corbicula fluminea: two rare bivalve molluscs in the River Great Ouse system in Cambridgeshire. Nat Cambs 49:39–49Google Scholar
  80. Wilmot NV, Barber DJ, Taylor JD, Graham AL (1992) Electron microscopy of molluscan crossed-lamellar microstructure. Phil Trans Roy Soc Lond B 337:21–35CrossRefGoogle Scholar
  81. Zieritz A, Aldridge DC (2009) Identification of ecophenotypic trends within three European freshwater mussel species (Bivalvia: Unionoida) using traditional and modern morphometric techniques. Biol J Linn Soc 98:814–825CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Nicole Spann
    • 1
  • Elizabeth M. Harper
    • 2
  • David C. Aldridge
    • 1
  1. 1.Department of ZoologyUniversity of CambridgeCambridgeUK
  2. 2.Department of Earth SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations