Naturwissenschaften

, Volume 97, Issue 8, pp 763–767 | Cite as

Dominance of the odometer over serial landmark learning in honeybee navigation

  • Randolf Menzel
  • Jacqueline Fuchs
  • Leonard Nadler
  • Benjamin Weiss
  • Nicole Kumbischinski
  • Daniel Adebiyi
  • Sergej Hartfil
  • Uwe Greggers
Short Communication

Abstract

Honeybees use their visual flow field to measure flight distance. It has been suggested that the experience of serial landmarks encountered on the flight toward a feeding place contributes to distance estimation. Here, we address this question by tracing the flight paths of individual bees with a harmonic radar system. Bees were trained along an array of three landmarks (tents), and the distance between these landmarks was either increased or decreased under two test conditions. We find that absolute distance estimation dominates the search for the feeding place, but serial position effects are also found. In the latter case, bees search only or additionally at locations determined by serial experience of the landmarks.

Keywords

Distance estimation Counting Serial object detection Radar tracing 

Notes

Acknowledgments

The study was supported by DFG grant Me 365/34-1. We are most grateful to Prof. W.D. Haass and Dipl.-Ing. B. Fischer for constructing and building the harmonic radar device.

References

  1. Chittka L, Geiger K (1995a) Can honeybees count landmarks? Anim Behav 49:159–164CrossRefGoogle Scholar
  2. Chittka L, Geiger K (1995b) Honeybee long-distance orientation in a controlled environment. Ethology 99:117–126CrossRefGoogle Scholar
  3. Chittka L, Geiger K, Kunze J (1995) The influences of landmarks on distance estimation of honey bees. Anim Behav 50:23–31CrossRefGoogle Scholar
  4. Collett TS, Collett M (2002) Memory Use In Insect Visual Navigation. Nat Rev Neurosci 3:542–552CrossRefPubMedGoogle Scholar
  5. Dacke M, Srinivasan MV (2008) Evidence for counting in insects. Anim Cogn 11(4):683–689CrossRefPubMedGoogle Scholar
  6. Esch HE, Zhang SW, Srinivasan MV, Tautz J (2001) Honeybee dances communicate distances measured by optic flow. Nature 411(6837):581–583CrossRefPubMedGoogle Scholar
  7. Menzel R (2009) Serial position learning in honeybees. PLoS ONE 4(3):e4694CrossRefPubMedGoogle Scholar
  8. Menzel R, Greggers U, Smith AD, Berger S, Brandt R, Brunke S, Bundrock G, Huelse S, Pluempe T, Schaupp F, Schuettler E, Stach S, Stindt J, Stollhoff N, Watzl S (2005) Honeybees navigate according to a map-like spatial memory. Proc Natl Acad Sci USA 102(8):3040–3045CrossRefPubMedGoogle Scholar
  9. Riley JR, Smith AD, Reynolds DR, Edwards AS, Osborne JL, Williams IH, Carreck NL, Poppy GM (1996) Tracking bees with harmonic radar. Nature 379:29–30CrossRefGoogle Scholar
  10. Riley JR, Greggers U, Smith AD, Reynolds DR, Menzel R (2005) The flight paths of honeybees recruited by the waggle dance. Nature 435(7039):205–207CrossRefPubMedGoogle Scholar
  11. Srinivasan MV, Zhang SW (2004) Visual motor computations in insects. Annu Rev Neurosci 27:679–696CrossRefPubMedGoogle Scholar
  12. von Frisch K (1965) Tanzsprache und Orientierung der Bienen. Springer, HeidelbergGoogle Scholar
  13. Zhang SW, Bartsch K, Srinivasan MV (1996) Maze learning by honeybees. Neurobiol Learn Mem 66:267–282CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Randolf Menzel
    • 1
  • Jacqueline Fuchs
    • 1
  • Leonard Nadler
    • 1
  • Benjamin Weiss
    • 1
  • Nicole Kumbischinski
    • 1
  • Daniel Adebiyi
    • 1
  • Sergej Hartfil
    • 1
  • Uwe Greggers
    • 1
  1. 1.Institut für Biologie, NeurobiologieFreie Universität BerlinBerlinGermany

Personalised recommendations