, Volume 97, Issue 8, pp 697–706 | Cite as

Gaudeamus lavocati sp. nov. (Rodentia, Hystricognathi) from the early Oligocene of Zallah, Libya: first African caviomorph?

  • Pauline Coster
  • Mouloud Benammi
  • Vincent Lazzari
  • Guillaume Billet
  • Thomas Martin
  • Mustafa Salem
  • Awad Abolhassan Bilal
  • Yaowalak Chaimanee
  • Mathieu Schuster
  • Xavier Valentin
  • Michel Brunet
  • Jean-Jacques Jaeger
Original Paper


A new African species of hystricognathous rodent, Gaudeamus lavocati sp. nov., is described herein from the early Oligocene deposits of Zallah locality (Sirt basin, Central Libya). The dental morphology of this species is very close to that of some earliest South American caviomorphs. It allows a reinterpretation of molar crest homologies among earliest caviomorphs, pentalophodonty being confirmed as the plesiomorphic molar condition in Caviomorpha. This morphological resemblance argues for close affinities between Gaudeamus and earliest South American hystricognaths. Cladistic analysis supports Gaudeamus lavocati sp. nov. as the first known African representative of Caviomorpha, implying that its ancestors were part of the African phiomyid group that crossed the South Atlantic by a direct immigration route. Alternatively, the series of derived dental features of Gaudeamus could also be interpreted as evolutionary synchronous convergences of an African hystricognath lineage towards the specialized pattern of some caviomorphs. However, the high level of similarities concerning teeth morphology and enamel microstructure and the similar age of fossiliferous strata on both continents make this interpretation less probable. The phylogenetic position of this taxon is of considerable importance because it represents an enigmatic component of the phiomorph–caviomorph radiation in Africa and appears as a new clue toward the understanding of caviomorph origins.


Hystricognathi Phiomorpha Caviomorpha Eocene Africa South America 



The authors would like to thank L. Marivaux and B. Marandat who participated to the field work in Zallah and IBrahim Lameen of Umm Al Ghozlan Logistic Company who facilitated the screening operation, giving us access to his farm and to unrestricted amount of water. We are extremely grateful to L. Marivaux for his constructive comments and fruitful discussions. We finally would like to thank Sabine Riffaut for the drawings of G. lavocati cheek teeth. This work has been completed in the frame of the cooperative program between University of Poitiers and University El Fateh, Tripoli, Libya. It was supported by the University of Poitiers, the C.N.R.S. “Eclipse II” program and the ANR-05-BLAN-0235.

Supplementary material

114_2010_683_MOESM1_ESM.doc (840 kb)
ESM 1 (DOC 840 kb)
114_2010_683_MOESM2_ESM.doc (12.5 mb)
ESM 2 (DOC 12.5 mb)


  1. Adkins RM, Gelke EL, Rowe D, Honeycutt RL (2001) Molecular phylogeny and divergence time estimates for major rodent groups: evidence from multiple genes. Mol Biol Evol 18(5):777–791PubMedGoogle Scholar
  2. Adkins RM, Walton AH, Honeycutt RL (2003) Higher-level systematics of rodents and divergence time estimates based on two congruent nuclear genes. Mol Phylogenet Evol 26(3):409–420CrossRefPubMedGoogle Scholar
  3. Arambourg C (1963) Continental vertebrate faunas of the Tertiary of North Africa. In: Howell FC, Bourliere F (eds) African ecology and human evolution. Aldine, Chicago, pp 55–60Google Scholar
  4. Arnoult-Saget S, Magnier P (1961) Découverte de dents de paléomastodontes dans la région de Zella (Tripolitaine). Bull Soc Géol Fr 7:237–283Google Scholar
  5. Barker P, Dalziel I, Storey B (1991) Tectonic development of the Scotia Arc region. In: Tingey R (ed) The geology of Antarctica. Clarendon, Oxford, pp 215–248Google Scholar
  6. Blanga-Kanfi S, Miranda H, Penn O, Pupko T, DeBry RW, Huchon D (2009) Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evol Biol 9:71. doi: 10.1186/1471-2148-9-71 CrossRefPubMedGoogle Scholar
  7. Bowdich TE (1821) An analysis of the natural classifications of Mammalia, for the use of students and travellers. J. Smith, ParisGoogle Scholar
  8. Bremer K (1988) The limits of amino-acid sequence data in angiosperms phylogenetic reconstruction. Evolution 42:795–803. doi: 10.2307/2408870 CrossRefGoogle Scholar
  9. Bryant JD, Mckenna MC (1995) Cranial anatomy and phylogenetic position of Tsaganomys altaicus (Mammalia: Rodentia) from the Hsanda Gol Formation (Oligocene), Mongolia. Am Mus Nov 3156:1–42Google Scholar
  10. Catzeflis FM, Hänni C, Sourouille P, Douzery E (1995) Molecular systematics of Hystricognath rodents: the contribution of Sciurognath mitochondrial 12S rRNA sequences. Mol Phylogenet Evol 4:357–360. doi: 10.1006/mpev.1995.1032 CrossRefPubMedGoogle Scholar
  11. Chevret P, Denys C, Jaeger JJ, Michaux J, Catzeflis F (1993) Molecular evidence that the spiny mouse (Acomys) is more closely related to the gerbils (Gerbillinae) than to true mice (Murinae). Proc Nat Acad Sci USA 90:3433–3436CrossRefPubMedGoogle Scholar
  12. Ducrocq S, Boisserie JR, Tiercelin JJ, Delmer C, Garcia G, Kyalo MF, Leakey MG, Marivaux L, Otero O, Peigné S, Tassy P, Lihoreau F (2010) New oligocene vertebrate localities from Northern Kenya (Turkana Basin). J Vert Paleontol 30(1):293–299CrossRefGoogle Scholar
  13. Fejfar O (1987) Oligocene rodents from Zallah Oasis, Libya. Münchner Geowiss Abh A10:265–268Google Scholar
  14. Flynn LJ, Jacobs LL, Chema IU (1986) Baluchimyine Rodents from the Zinda Pir Dome, Western Pakistan: systematic and biochronology implications. Am Mus Nov 2841:1–58Google Scholar
  15. Flynn LJ, Downs W, Morgan ME, Barry JC, Pilbeam D (1998) High Miocene species richness in the Siwaliks of Pakistan. Nat Sci Mus Monogr 14:167–180Google Scholar
  16. Frailey CD, Campbell KE (2004) The rodents of the Santa Rosa local fauna. In: Campbell KE (ed) The paleogene mammalian fauna of Santa Rosa, Amazonian Peru, Natural History Museum, Los Angeles County, Science Series, pp 71–130Google Scholar
  17. Goloboff P, Farris J, Nixon K (2003) T.N.T.: Tree Analysis Using New Technology. Programm and documentation available at
  18. Hartenberger JL (1985) The order Rodentia: major questions on their evolutionary origin, relationships, and supra-familial systematics. In: Luckett WP, Hartenberger JL (eds) Evolutionary relationships among rodents, a multidisciplinary analysis. Plenum press, New York, pp 1–33Google Scholar
  19. Hoffstetter R, Lavocat R (1970) Découverte dans le Déséadien de Bolivie des genres pentalophodontes appuyant les affinités africaines des rongeurs Caviomorphes. C R Acad Sci 271:172–175Google Scholar
  20. Holroyd P (1994) An examination of dispersal origins for Fayum Mammalia, Ph.D. thesis, Duke University, Durham, North CarolinaGoogle Scholar
  21. Houle A (1999) The origin of platyrrhines: an evaluation of the Antarctic scenario and the floating island model. Am J Phys Anthropol 109:541–559CrossRefPubMedGoogle Scholar
  22. Huchon D, Douzery EJP (2001) From the Old World to the New World: a molecular chronicle of the phylogeny and biogeography of hystricognth rodents. Mol Phylogenet Evol 20:238–251. doi: 10.1006/mpev.2001.0961 CrossRefPubMedGoogle Scholar
  23. Huchon D, Catzeflis FM, Douzery EJP (1999) Molecular evolution of the nuclear von Willebrand factor gene in mammals and the phylogeny of rodents. Mol Biol Evol 16:577–589PubMedGoogle Scholar
  24. Huchon D, Catzeflis F, Douzery EJP (2000) Variance of molecular datings, evolution of rodents and the phylogenetic affinities between Ctenodactylidae and Hystricognathi. Proc R Soc London, Ser B 267(1441):393–402. doi: 10.1098/rspb.2000.1014 CrossRefGoogle Scholar
  25. Hugot JP (2002) New evidence of Hystricognath Rodents monophyly from the phylogeny of their pinworms. In: Roderic D, Page M (eds) Tangled trees: phylogenies, cospeciation and coevolution. University Press, Chicago, pp 144–173Google Scholar
  26. Hussain ST, de Bruijn H, Leinders JM (1978) Middle Eocene rodents from the Kala Chitta Range (Punjab, Pakistan). Proc Koninklijke Nederlandse Akademie van Wetenschappen B 81:74–112Google Scholar
  27. Jaeger JJ (1989) L'évolution de la pentalophodontie chez les rongeurs Caviomorphes (Mammalia, Rodentia). Geobios Mem Sp 12:235–244CrossRefGoogle Scholar
  28. Jaeger JJ, Denys C, Coiffait B (1985) New Phiomorpha and Anomaluridae from the late Eocene of North-West Africa: phylogenetic implications. In: Luckett WP, Hartenberger JL (eds) Evolutionary relationships among rodents, a multidisciplinary analysis. Plenum press, New York, pp 567–588Google Scholar
  29. Jaeger JJ, Marivaux L, Salem M, Bilal AA, Benammi M, Chaimanee Y, Duringer P, Marandat B, Metais E, Schuster M, Valentin X, Brunet M (2010) New rodents assemblages from the Eocene Dur at-Talhah escarpment (Sahara of Central Libya): systematic, biochronologic and paleobiogeographic implications. Zool J Linn Soc (in press)Google Scholar
  30. Jansa SA, Weskler M (2004) Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences. Mol Phylogenet Evol 31:256–276CrossRefPubMedGoogle Scholar
  31. Lavocat R (1969) La systématique des rongeurs hystricomorphes et la dérive des continents. C R Acad Sci 269:1496–1497Google Scholar
  32. Lavocat R (1978) Rodentia and Lagomorpha. In: Maglio VJ, Cooke HBS (eds) Evolution of African Mammals. Harvard Univ. Press, Cambridge, pp 69–89Google Scholar
  33. Luckett WP, Hartenberger JL (1993) Monophyly or polyphyly of the order of Rodentia: possible conflict between morphological and molecular interpretations. J Mamm Evol 1:127–147. doi: 10.1007/BF01041591 CrossRefGoogle Scholar
  34. Marivaux L, Vianey-Liaud M, Welcomme JL, Jaeger JJ (2002) The role of Asia in the origin and diversification of hystricognathous rodents. Scr Zool 31:225–239. doi: 10.1046/j.1463-6409.2002.00074.x CrossRefGoogle Scholar
  35. Marivaux L, Vianey-Liaud M, Jaeger JJ (2004) High-level phylogeny of early Tertiary rodents: dental evidence. Zool J Linn Soc 142:105–134. doi: 10.1111/j.1096-3642.2004.00131.x CrossRefGoogle Scholar
  36. Martin T (1993) Early rodent incisor enamel evolution: phylogenetic implications. J Mamm Evol 1:227–254. doi: 10.1007/BF01041665 CrossRefGoogle Scholar
  37. Martin T (1994) African origin of caviomorph rodents is indicated by incisor enamel microstructure. Paleobiology 20:5–13Google Scholar
  38. Martin T (2004) Incisor schmelzmuster diversity in South America's oldest rodent fauna and early caviomorph history. In: Campbell KE (ed) The paleogene mammalian fauna of Santa Rosa, Amazonian Peru, Natural History Museum, Los Angeles County, Science Series, pp 131–140Google Scholar
  39. Nedbal MA, Honeycutt RL, Schlitter DA (1996) Higher-level systematics of rodents (Mammalia, Rodentia): evidence from the mitochondrial 12S rRNA gene. J Mamm Evol 3:201–237. doi: 10.1007/BF01458181 CrossRefGoogle Scholar
  40. Osborn HF (1908) New fossil mammals from the Fayum Oligocene, Egypt. Bull Am Mus nat Hist 24:265–272Google Scholar
  41. Parent JP (1980) Recherches sur l'oreille moyenne des Rongeurs actuels et fossiles. Anatomie, valeur systématique. École Pratique des Hautes Études. Mémoires et travaux de l'Institut de Montpellier 11:1–285Google Scholar
  42. Patterson H, Wood AE (1982) Rodents from the Deseadan Oligocene of Bolivia and the relationships of the Caviomorpha. Bull Mus Comp Zool Harv Univ 149:371–543Google Scholar
  43. Poux C, Chevret P, Huchon D, de Jong WW, Douzery EJP (2006) Arrival and diversification of caviomorph rodents and platyrrhine primates in South America. Syst Biol 55:228–244. doi: 10.1080/10635150500481390 CrossRefPubMedGoogle Scholar
  44. Sallam HM, Seiffert ER, Steiper ME, Simons EL (2009) Fossil and molecular evidence constrain scenarios for the early evolutionary and biogeographic history of hystricognathous rodents. Proc Nat Acad Sci 106:16722–16727. doi: 10.1073/pnas.0908702106 CrossRefPubMedGoogle Scholar
  45. Schlosser M (1911) Beiträge zur Kenntnis der Oligozänen Landsäugetiere aus dem Fayûm (Ägypten). Beiträge zur Paläontologie und Geologie Österreich-Ungarns 24:51–167Google Scholar
  46. Sen S (2001) Early Pliocene porcupine (Mammalia, Rodentia) from Perpignan, France: a new systematic study. Geodiversitas 23(2):303–312Google Scholar
  47. Swofford DL (1998) PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods), v.4 Sunderland, MA: Sinauer AssociatesGoogle Scholar
  48. Tabuce R, Coiffait B, Coiffait PE, Mahboubi M, Jaeger JJ (2001) Knowledge of the evolution of African Paleogene mammals: contribution of the Bir El Ater locality (Eocene, Algeria). In: Denys C, Granjon L, Poulet A (eds) African small mammals. IRD Editions, Paris, pp 215–229Google Scholar
  49. Thomas H, Roger J, Sen S, Bourdillon-de-Grissac C, Al-Sulaimani Z (1989) Découverte de vertébrés fossiles dans l'Oligocène inférieur du Dhofar (Sultanat d'Oman). Geobios 22:101–120CrossRefGoogle Scholar
  50. Tullberg T (1899) Ueber das System der Nagetiere: eine phylogenetische Studie. Nova Acta Reg Soc Scient Uppsala 18:1–514Google Scholar
  51. Van Weers DJ, Montoya P (1996) Taxonomy and stratigraphic record of the oldest European porcupine Hystrix parvae (Kretzoi, 1951). Proceedings of the Koniklijke Nederlandse Akademie van Wetenschappen 99(B):131–141Google Scholar
  52. Winkler AJ (1994) The middle/upper Miocene dispersal of Major Rodent groups between southern Asia aand Africa. In: Tomida Y, Li CK, Stetoguch T (eds) Rodent and Lagomorph families of Asian origins and diversification, Nat Sci Mus Monogr, Tokyo, pp 173–184Google Scholar
  53. Wood AE (1968) Part II: The African Oligocene Rodentia. In: Remington JE (ed) Early cenozoic mammalian faunas Fayum province, Egypt, Peabody Museum of Natural History Yale University, New Haven, pp 23–105Google Scholar
  54. Wood AE, Patterson B (1959) Rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution. Bull Mus Comp Zool 120:281–428Google Scholar
  55. Woodburne M, Zinsmeister W (1984) The first land mammal from Antarctica and its biogeographic implications. J Paleontol 58:913–948Google Scholar
  56. Wyss AR, Flynn JJ, Norell MA, Swisher CC, Charrier R, Novacek MJ, McKenna MC (1993) South America’s oldest rodent and recognition of a new interval of mammalian evolution. Nature 365:434–437CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Pauline Coster
    • 1
  • Mouloud Benammi
    • 1
  • Vincent Lazzari
    • 1
  • Guillaume Billet
    • 1
  • Thomas Martin
    • 2
  • Mustafa Salem
    • 3
  • Awad Abolhassan Bilal
    • 4
  • Yaowalak Chaimanee
    • 5
  • Mathieu Schuster
    • 1
  • Xavier Valentin
    • 1
  • Michel Brunet
    • 6
  • Jean-Jacques Jaeger
    • 1
  1. 1.Institut International de Paléoprimatologie, Paléontologie Humaine: Evolution et Paléoenvironnements (iPHEP), UMR-CNRS 6046Université de Poitiers UFR SFAPoitiers CedexFrance
  2. 2.Steinmann-Institut für Geologie, Mineralogie und PaläontologieUniversität BonnBonnGermany
  3. 3.Geology DepartmentUniversity of El FatehTripoliLibya
  4. 4.Geology DepartmentGaryounis UniversityBenghaziLibya
  5. 5.Paleontology Division, Bureau of Paleontology and Museum, Department of Mineral ResourcesBangkokThailand
  6. 6.Chaire de Paléontologie HumaineCollège de FranceParis Cedex 5France

Personalised recommendations