Advertisement

Naturwissenschaften

, Volume 97, Issue 5, pp 495–503 | Cite as

The frontal gland in workers of Neotropical soldierless termites

  • Jan Šobotník
  • David Sillam-Dussès
  • František Weyda
  • Alain Dejean
  • Yves Roisin
  • Robert HanusEmail author
  • Thomas Bourguignon
Original Paper

Abstract

The presence of the frontal gland is well established in termite soldiers of Rhinotermitidae, Serritermitidae, and Termitidae. It is one of their main defensive adaptations or even an exclusive weapon. The gland was also occasionally reported in alate imagoes, but never in the worker caste. Here, we report the first observation of a frontal gland in workers of several Neotropical and one African species of Apicotermitinae. The ultrastructure of Aparatermes cingulatus and Anoplotermes nr. subterraneus is described in detail. In these two species, the gland is well-developed, functional and consists of class 1 secretory cells. The presence of envelope cells, wrapping the gland, is an unusual feature, as well as the presence of several zonulae adherens, connecting neighbouring glandular cells. The frontal gland of workers is homologous to this organ in soldiers and imagoes, as evidenced by the same position in the head and its connection to the same muscle. However, the defensive role of the frontal gland in workers remains to be confirmed.

Keywords

Frontal gland Workers Soldierless termites Apicotermitinae Anoplotermes Aparatermes 

Notes

Acknowledgements

The authors are grateful to Andrea Dejean for the revision of the English manuscript, to Julien Cillis and Yves Laurent for SEM and optical microscopy assistance, respectively. We warmly thank Kumar Krishna from the American Museum of Natural History, who kindly gave us access to the type material of all of the Neotropical Apicotermitinae. This research was funded by the Grant Agency of the Academy of Sciences of the Czech Republic (project no. IAA600550614), by the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague (project No. Z4 055 0506), by the National Fund for Scientific Research (F.R.S.–FNRS, Belgium) through several travelling grants and a predoctoral fellowship to TB, and by the Programme Amazonie II of the French Centre National de la Recherche Scientifique (project 2ID).

References

  1. Ahmad M (1976) The soldierless termite genera of the Oriental region, with a note on their phylogeny (Isoptera: Termitidae). Pakistan J Zool 8:105–123Google Scholar
  2. Bordereau C, Robert A, Van Tuyen V, Peppuy A (1997) Suicidal defensive behaviour by frontal gland dehiscence in Globitermes sulphureus Haviland soldiers (Isoptera). Insect Soc 44:289–297CrossRefGoogle Scholar
  3. Bourguignon T, Šobotník J, Hanus R, Roisin Y (2009a) Developmental pathways of Glossotermes oculatus (Isoptera, Serritermitidae): at the cross-roads of worker caste evolution in termites. Evol Dev 11:659–668CrossRefPubMedGoogle Scholar
  4. Bourguignon T, Šobotník J, Lepoint G, Martin J-M, Roisin Y (2009b) Niche differentiation among neotropical soldierless soil-feeding termites revealed by stable isotope ratios. Soil Biol Biochem 41:2038–2043CrossRefGoogle Scholar
  5. Bugnion E (1913) Le Termes horni Wasm. de Ceylan. Rev Suisse Zool 21:299–330Google Scholar
  6. Chhotani OB (1997) Fauna of India—Isoptera (Termites), vol 2. Zoological Survey of India, CalcuttaGoogle Scholar
  7. Costa-Leonardo AM (1998) The frontal weapon of the termite soldier Serritermes serrifer (Isoptera, Serritermitidae). Cien Cult 50:65–67Google Scholar
  8. Costa-Leonardo AM (2004) A new interpretation of the defense glands of Neotropical Ruptitermes (Isoptera, Termitidae, Apicotermitinae). Sociobiology 44:391–401Google Scholar
  9. Costa-Leonardo AM, Kitayama K (1991) Frontal gland dehiscence in the Brazilian termite Serritermes serrifer (Isoptera: Serritermitidae). Sociobiology 19:333–338Google Scholar
  10. Crossley AC, Waterhouse DF (1969) The ultrastructure of the osmeterium and the nature of its secretion in Papilio larvae (Lepidoptera). Tissue Cell 1:525–554CrossRefPubMedGoogle Scholar
  11. Deligne J (1970) Recherches sur la transformation des jeunes en soldats dans la société de termites (Insectes, Isoptères). Dissertation, Université de BruxellesGoogle Scholar
  12. Deligne J, Quennedey A, Blum MS (1981) The enemies and defense mechanisms of termites. In: Hermann HR (ed) Social insects, vol II. Academic, New York, pp 1–76Google Scholar
  13. Eisner T, McHenry F, Salpeter MM (1964) Defense mechanisms of Arthropods XV. Morphology of the quinone-producing glands of a tenebrionid beetle (Eleodes longicollis Lec.). J Morphol 115:355–400CrossRefPubMedGoogle Scholar
  14. Feytaud J (1912) Contribution à l’étude du Termite lucifuge. (Anatomie, Fondation de colonies nouvelles.). Arch Anat Microscop Morphol Exptl 13:481–607Google Scholar
  15. Grandperrin D, Cassier P (1983) Anatomy and ultrastructure of the Koschenikow’s gland of the honey bee, Apis mellifera L. (Hymenoptera: Apidae). Int J Insect Morphol Embryol 12:25–42CrossRefGoogle Scholar
  16. Grassé PP (1984) Termitologia: anatomie, physiologie, biologie, systématique des termites. Tome 2. Fondation des sociétés. Construction. Masson, ParisGoogle Scholar
  17. Hare L (1937) Termite phylogeny as evidenced by soldier mandible development. Ann Entomol Soc Am 30:459–486Google Scholar
  18. Haverty MI (1977) The proportion of soldiers in termite colonies: a list and a bibliography. Sociobiology 2:199–216Google Scholar
  19. Holmgren N (1909) Termitenstudien. I. Anatomische Untersuchungen. Kgl Svenska Vetenskapsakad Handl 44:1–215Google Scholar
  20. Lelis AT, Everaerts C (1993) Effects of juvenile-hormone analogs upon soldier differentiation in the termite Reticulitermes santonensis (Rhinotermitidae: Heterotermitinae). J Morphol 217:239–261CrossRefGoogle Scholar
  21. Mathews AGA (1977) Studies on termites from the Mato Grosso State, Brazil. Acad Bras Cienc, Rio de JaneiroGoogle Scholar
  22. Mill AE (1984) Exploding termites—an unusual defensive behaviour. Entomol Month Mag 120:179–183Google Scholar
  23. Miller LR (1984) Invasitermes, a new genus of soldierless termites from northern Australia (Isoptera: Termitidae). J Aust Entomol Soc 23:33–37CrossRefGoogle Scholar
  24. Noirot C (1969) Glands and secretions. In: Krishna K, Weesner FM (eds) Biology of termites, vol I. Academic, New York, pp 89–123Google Scholar
  25. Noirot C, Quennedey A (1974) Fine structure of insect epidermal glands. Annu Rev Entomol 19:61–80CrossRefGoogle Scholar
  26. Noirot C, Darlington JPEC (2000) Termite nests: architecture, regulation and defence. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluver Academic, London, pp 121–139Google Scholar
  27. Pasteels JM, Bordereau C (1998) Releaser pheromones in termites. In: Van der Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects: ants, wasps, bees and termites. Westview, Boulder, pp 193–215Google Scholar
  28. Perna A, Jost C, Couturier E, Valverde S, Douady S, Theraulaz G (2008) The structure of gallery networks in the nests of termite Cubitermes spp. revealed by X-ray tomography. Naturwissenschaften 95:877–884CrossRefPubMedGoogle Scholar
  29. Piskorski R, Hanus R, Kalinová B, Valterová I, Křeček J, Bourguignon T, Roisin Y, Šobotník J (2009) Temporal and geographic variations in the morphology and chemical composition of the frontal gland in imagoes of Prorhinotermes species (Isoptera: Rhinotermitidae). Biol J Linn Soc 98:384–392CrossRefGoogle Scholar
  30. Prestwich GD (1984a) Defense mechanisms of termites. Annu Rev Entomol 29:201–232CrossRefGoogle Scholar
  31. Prestwich GD (1984b) Interspecific variation of deterpene composition of Cubitermes soldier defense secretions. J Chem Ecol 10:1219–1231CrossRefGoogle Scholar
  32. Quennedey A (1984) Morphology and ultrastructure of termite defense glands. In: Hermann HR (ed) Defensive mechanisms in social insects. Praeger, New York, pp 151–200Google Scholar
  33. Raina AK, Wergin WP, Murphy CA, Erbe EF (2000) Structural organization of the sex pheromone gland in Helicoverpa zea in relation to pheromone production and release. Arthropod Struct Dev 29:343–353CrossRefPubMedGoogle Scholar
  34. Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212CrossRefPubMedGoogle Scholar
  35. Roisin Y (2000) Diversity and evolution of caste patterns. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluver Academic, London, pp 95–119Google Scholar
  36. Rosengaus RB, Lefebvre ML, Traniello JFA (2000) An antiseptic function for termite defensive secretions: evidence from Nasutitermes. J Chem Ecol 26:21–39CrossRefGoogle Scholar
  37. Rowley AF, Ratcliffe NA (2005) A histological study of wound healing and hemocyte function in the wax-moth Galleria mellonella. J Morphol 157:181–199CrossRefGoogle Scholar
  38. Sands WA (1972) The soldierless termites of Africa (Isoptera: Termitidae). Bull Br Mus Nat Hist Entomol Suppl 18:1–244Google Scholar
  39. Sands WA (1982) Agonistic behavior of African soldierless Apicotermitinae (Isoptera: Termitidae). Sociobiology 7:61–72Google Scholar
  40. Scudder GGE, Meredith J (1982) Morphological basis of cardiac glycoside sequestration by Oncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae). Zoomorphology 99:87–101CrossRefGoogle Scholar
  41. Šobotník J, Weyda F, Hanus R, Kyjaková P, Doubský J (2004) Ultrastructure of the frontal gland in Prorhinotermes simplex (Isoptera: Rhinotermitidae) and quantity of the defensive substance. Eur J Entomol 101:153–163Google Scholar
  42. Šobotník J, Hanus R, Jirošová A (2010a) Chemical warfare in termites. J Insect Physiol (in press). doi: 10.1016/j.jinsphys.2010.02.012
  43. Šobotník J, Bourguignon T, Hanus R, Weyda F, Roisin Y (2010b) Structure and function of defensive glands in soldiers of Glossotermes oculatus (Isoptera: Serritermitidae). Biol J Linn Soc 99:839–848Google Scholar
  44. Wigglesworth VB (1937) Wound healing in an insect (Rhodnius Prolixus Hemiptera). J Exp Biol 14:364–381Google Scholar
  45. Zhao C, Rickards RW, Trowell SC (2004) Antibiotics from Australian terrestrial invertebrates. Part 1: antibacterial trinervitadienes from the termite Nasutitermes triodiae. Tetrahedron 60:10753–10759CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jan Šobotník
    • 1
  • David Sillam-Dussès
    • 1
  • František Weyda
    • 2
  • Alain Dejean
    • 3
  • Yves Roisin
    • 4
  • Robert Hanus
    • 1
    Email author
  • Thomas Bourguignon
    • 4
  1. 1.Research Team of Infochemicals, Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPraha 6Czech Republic
  2. 2.Department of Physiology, Institute of EntomologyBiology Centre, Czech Academy of SciencesČeské BudějoviceCzech Republic
  3. 3.CNRS, Écologie des Forêts de GuyaneUMR-CNRS 8172Kourou cedexFrance
  4. 4.Evolutionary Biology and Ecology, CP 160/12Université Libre de BruxellesBrusselsBelgium

Personalised recommendations