Naturwissenschaften

, Volume 97, Issue 4, pp 429–433 | Cite as

Brood comb as a humidity buffer in honeybee nests

  • Michael B. Ellis
  • Sue W. Nicolson
  • Robin M. Crewe
  • Vincent Dietemann
Short Communication

Abstract

Adverse environmental conditions can be evaded, tolerated or modified in order for an organism to survive. During their development, some insect larvae spin cocoons which, in addition to protecting their occupants against predators, modify microclimatic conditions, thus facilitating thermoregulation or reducing evaporative water loss. Silk cocoons are spun by honeybee (Apis mellifera) larvae and subsequently incorporated into the cell walls of the wax combs in which they develop. The accumulation of this hygroscopic silk in the thousands of cells used for brood rearing may significantly affect nest homeostasis by buffering humidity fluctuations. This study investigates the extent to which the comb may influence homeostasis by quantifying the hygroscopic capacity of the cocoons spun by honeybee larvae. When comb containing cocoons was placed at high humidity, it absorbed 11% of its own mass in water within 4 days. Newly drawn comb composed of hydrophobic wax and devoid of cocoons absorbed only 3% of its own mass. Therefore, the accumulation of cocoons in the comb may increase brood survivorship by maintaining a high and stable humidity in the cells.

Keywords

Honeybee Cocoon Larvae Humidity Nest homeostasis 

References

  1. Berry JA, Delaplane KS (2001) Effects of comb age on honey bee colony growth and brood survivorship. J Apic Res 40:3–8Google Scholar
  2. Büdel A (1948) Der Wasserdampfhaushalt im Bienenstock. Z Vgl Physiol 36:249–273Google Scholar
  3. Chauvin G, Vannier G, Gueguen A (1979) Larval case and water balance in Tinea pellionella. J Insect Physiol 25:615–619CrossRefGoogle Scholar
  4. Danks HV (2002) Modification of adverse conditions by insects. Oikos 99:10–24CrossRefGoogle Scholar
  5. Dietz A, Haydak MH (1971) Caste determination in honey bees: I. The significance of moisture in larval food. J Exp Zool 177:353–358CrossRefPubMedGoogle Scholar
  6. Doull KM (1976) The effects of different humidities on the hatching of the eggs of honeybees. Apidologie 7:61–66CrossRefGoogle Scholar
  7. Ellis MB, Nicolson SW, Crewe RM, Dietemann V (2008) Hygropreference and brood care in the honeybee (Apis mellifera scutellata). J Insect Physiol 54:1516–1521CrossRefPubMedGoogle Scholar
  8. Hepburn HR (1986) Honeybees and wax. Springer, BerlinGoogle Scholar
  9. Hepburn HR, Kurstjens SP (1988) The combs of honeybees as composite materials. Apidologie 19:25–36CrossRefGoogle Scholar
  10. Human H, Nicolson SW, Dietemann V (2006) Do honeybees, Apis mellifera scutellata, regulate humidity in their nest? Naturwissenschaften 93:397–401CrossRefPubMedGoogle Scholar
  11. Humphrey JAC, Dykes ES (2008) Thermal energy conduction in a honey bee comb due to cell-heating bees. J Theor Biol 250:194–208CrossRefPubMedGoogle Scholar
  12. Jay SC (1964) The cocoon of the honey bee, Apis mellifera L. Can Entomol 96:784–792CrossRefGoogle Scholar
  13. Klingner R, Richter K, Schmolz E, Keller B (2005) The role of moisture in the nest thermoregulation of social wasps. Naturwissenschaften 92:427–430CrossRefPubMedGoogle Scholar
  14. Lindauer M (1954) Temperaturregulierung und Wasserhaushalt im Bienenstaat. Z Vgl Physiol 36:391–432CrossRefGoogle Scholar
  15. Lyon BE, Cartar RV (1996) Functional significance of the cocoon in two arctic Gynaephora moth species. Proc R Soc Lond B 263:1159–1163CrossRefGoogle Scholar
  16. McNally LC, Schneider SS (1992) Seasonal cycles of growth, development and movement of the African honey bee, Apis mellifera scutellata, in Africa. Insect Soc 39:167–179CrossRefGoogle Scholar
  17. Nowbahari B, Thibout E (1990) The cocoon and humidity in the development of Acrolepiopsis assectella (Lep.) pupae: consequences in adults. Physiol Entomol 15:363–368CrossRefGoogle Scholar
  18. Otis GW, Wearing-Wilde JM (1992) Net reproductive rate of unmanaged colonies, (Apis mellifera L.). Insect Soc 39:157–165CrossRefGoogle Scholar
  19. Otto C (1983) Behavioural and physiological adaptations to a variable habitat in two species of case-making caddis larvae using different food. Oikos 41:188–194CrossRefGoogle Scholar
  20. Reinhardt JF (1939) Ventilating the bee colony to facilitate the honey ripening process. J Econ Entomol 32:654–660Google Scholar
  21. Ribbands CR (1953) The behaviour and social life of honeybees. Bee Research Association, LondonGoogle Scholar
  22. Rudall KM (1962) Silk and other cocoon proteins. In: Florkin M, Mason HS (eds) Comp biochem. Academic, New YorkGoogle Scholar
  23. Schneider S, Blyther R (1988) The habitat and nesting biology of the African honey bee Apis mellifera scutellata in the Okavango river delta, Botswana, Africa. Insect Soc 35:167–181CrossRefGoogle Scholar
  24. Tagawa J (1996) Function of the cocoon of the parasitoid wasp, Cotesia glomerata L. (Hymenoptera: Braconidae): protection against desiccation. Jap Soc App Entomol Zool 31:99–103Google Scholar
  25. Winston ML, Dropkin JA, Taylor OR (1981) Demography and life history characteristics of two honey bee races (Apis mellifera). Oecologia 48:407–413CrossRefGoogle Scholar
  26. Wohlgemuth R (1957) Die temperaturregulation des Bienenvolkes unter Regeltheoretischen Gesichtspunken. Z Vgl Physiol 40:119–161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Michael B. Ellis
    • 1
  • Sue W. Nicolson
    • 1
  • Robin M. Crewe
    • 1
  • Vincent Dietemann
    • 1
    • 2
  1. 1.Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
  2. 2.Swiss Bee Research CentreAgroscope Liebefeld-Posieux Research Station ALPBernSwitzerland

Personalised recommendations