Naturwissenschaften

, Volume 97, Issue 4, pp 365–377 | Cite as

New postcrania of Deccanolestes from the Late Cretaceous of India and their bearing on the evolutionary and biogeographic history of euarchontan mammals

  • Doug M. Boyer
  • Guntupalli V. R. Prasad
  • David W. Krause
  • Marc Godinot
  • Anjali Goswami
  • Omkar Verma
  • John J. Flynn
Original Paper

Abstract

Extant species of the supraordinal mammal clade Euarchonta belong to the orders Primates, Scandentia, or Dermoptera. The fossil record of euarchontans suggests that they underwent their initial radiation during the Paleocene (65–55 million years ago) in North America, Eurasia, and Africa. The time and place of origin is poorly resolved due to lack of definitive fossils of euarchontan stem taxa. We describe a fragmentary humerus and two fragmentary ulnae from the latest Cretaceous of India that bear significantly on this issue. The fossils are tentatively referred to Deccanolestes cf. hislopi due to their small size and the fact that Deccanolestes is the only eutherian dental taxon to have been recovered from the same locality. The new fossils are used to evaluate the existing behavioral hypothesis that Deccanolestes was arboreal, and the competing phylogenetic hypotheses that Deccanolestes is a stem eutherian versus a stem euarchontan. The humerus resembles those of euarchontans in possessing a laterally keeled ulnar trochlea, a distinct zona conoidea, and a spherical capitulum. These features also suggest an arboreal lifestyle. The ulnar morphology is consistent with that of the humerus in reflecting an arboreal/scansorial animal. Detailed quantitative comparisons indicate that, despite morphological correlates to euarchontan-like arboreality, the humerus of Deccanolestes is morphologically intermediate between those of Cretaceous “condylarthran” mammals and definitive Cenozoic euarchontans. Additionally, humeri attributed to adapisoriculids are morphologically intermediate between those of Deccanolestes and definitive euarchontans. If adapisoriculids are euarchontans, as recently proposed, our results suggest that Deccanolestes is more basal. The tentative identification of Deccanolestes as a basal stem euarchontan suggests that (1) Placentalia began to diversify and Euarchonta originated before the Cretaceous–Tertiary boundary and (2) the Indian subcontinent, Eurasia, and Africa are more likely places of origin for Euarchonta than is North America.

Keywords

Adapisoriculid Afrodon Paleobiogeography Palaeoryctoid Placental Primate origins Sweepstakes dispersal 

Supplementary material

114_2010_648_MOESM1_ESM.doc (119 kb)
ESM Table 1Humerus measurements. See Fig. 5 for illustration of measurements. G1 geometric mean of all measurements except EEC, used for shape variables of principal coordinates analysis, G2 geometric mean of all variables except TL and CL, used to represent humerus size in main text Fig. 3, S&D Szalay and Dagosto. (DOC 119 kb)
114_2010_648_MOESM2_ESM.doc (50 kb)
ESM Table 2Coordinate loadings. Eigenvalue and percent variance represented by each coordinate follows its name in parentheses. Variables with top four highest Pearson correlation coefficients are given below the coordinate to which they are correlated (coefficient of correlation in parentheses). See main text Fig. 5 for illustration of measurements. (DOC 50 kb)

References

  1. Aitchison JC, Ali JR, Davis AM (2007) When and where did India and Asia collide? J Geophys Res 112:B05423. doi:10.1029/2006JB004706 CrossRefGoogle Scholar
  2. Ali JR, Aitchison JC (2008) Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth-Sci Rev 88:145–166CrossRefGoogle Scholar
  3. Allègre CJ, Birck JL, Capmas F, Courtillot V (1999) Age of the Deccan traps using 187Re-187Os systematics. Earth Planet Sci Lett 170:197–204CrossRefGoogle Scholar
  4. Bhatia SB, Riveline J, Rana RS (1990) Charophytes from the Deccan intertrappean beds near Rangapur, Andhra Pradesh, India. Palaeobotanist 37:316–323Google Scholar
  5. Bloch JI, Silcox MT, Boyer DM, Sargis EJ (2007) New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates. Proc Natl Acad Sci 104:1159–1164CrossRefPubMedGoogle Scholar
  6. Bossuyt F, Milinkovitch MC (2001) Amphibians as indicators of Early Tertiary “Out-of-India” dispersal of vertebrates. Science 292:93–95CrossRefPubMedGoogle Scholar
  7. Clemens WA (1974) Purgatorius, an early paromomyid primate (Mammalia). Science 184:903–905CrossRefPubMedGoogle Scholar
  8. Clyde WC, Khan IH, Gingerich PD (2003) Stratigraphic response and mammalian dispersal during initial India–Asia collision: evidence from the Ghazij Formation, Baluchistan, Pakistan. Geology 31:1097–1100CrossRefGoogle Scholar
  9. Conti E, Eriksson T, Schonenberger J, Systsma KJ, Baum DA (2002) Early Tertiary out-of-India dispersal of Crypteroniaceae: evidence from phylogeny and molecular dating. Evolution 56:1931–1942PubMedGoogle Scholar
  10. Cooper A, Lalueza-Fox C, Anderson S, Rambaut A, Austin J, Ward R (2001) Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409:704–707CrossRefPubMedGoogle Scholar
  11. Dutt NVBS (1975) Deccan Traps of the western part of Hyderabad District, Andhra Pradesh. Rec Geol Surv India 106:126–141Google Scholar
  12. Erickson PGP, Christidis L, Cooper A, Irestedt M, Jackson J, Johansson US, Norman JA (2002) A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proc R Soc Lond B 269:235–241CrossRefGoogle Scholar
  13. Garzanti E (2008) Comment on “When and where did India and Asia collide?” by Aitchison JC, Ali JR, and Davis AM. J Geophys Res 113:B04411. doi:10.1029/2007JB005276 CrossRefGoogle Scholar
  14. Gheerbrant E (1988) Afrodon chleuhi nov. gen., nov. sp., ‘insectivore’ (Mammalia, Eutheria) lipotyphlé (?) du Paléocène marocain: données préliminaires. C R Acad Sci-Paris, Ser II 307:1303–1309Google Scholar
  15. Gheerbrant E (1995) Les mammifères Paléocenes du Bassin d’Ouarzazate (Maroc). III. Adapisoriculidae et autres mammifères (Carnivora,? Creodonta, Condylarthra,? Ungulata et incertae sedis). Palaeontogr Abt A 237:39–132Google Scholar
  16. Gheerbrant E, Rage J-C (2006) Paleobiogeography of Africa: how distinct from Gondwana and Laurasia? Palaeogeogr Palaeoclimatol Palaeoecol 241:224–246CrossRefGoogle Scholar
  17. Gheerbrant E, Russell DE (1989) Presence of the genus Afrodon (Mammalia, Lipotyphla (ß), Adapisoriculidae) in Europe: new data for the problem of trans-Tethyan relations between Africa and Europe around the K/T boundary. Palaeogeogr Palaeoclimatol Palaeoecol 76:1–15CrossRefGoogle Scholar
  18. Gheerbrant E, Russell DE (1991) Bustylus cernaysi nov. gen., nov. sp., nouvel Adapisoriculidé (Mammalia, Eutheria) Paléocène d’Europe. Geobios 24:467–481CrossRefGoogle Scholar
  19. Gheerbrant E, Sudre J, Sen S, Abrial C, Marandat B, Sigé B, Vianey-Liaud M (1998) Nouvelles données sur les mammiferes du Thanétien et de l’Ypresien du Bassin d’Ouarzazate (Maroc) et leur contexte stratigraphique. Palaeovertebrata 27:155–202Google Scholar
  20. Gingerich PD (1976) Cranial anatomy and evolution of Early Tertiary Plesiadapidae (Mammalia, Primates). Univ Mich Pap Paleontol 15:1–141Google Scholar
  21. Godinot M (1994) Early North African primates and their significance for the origin of Simiiformes (=Anthropoidea). In: Fleagle JG, Kay RF (eds) Anthropoid origins. Plenum, New York, pp 235–295Google Scholar
  22. Godinot M, Prasad GVR (1994) Discovery of Cretaceous arboreal eutherians. Naturwissenschaften 81:79–81CrossRefGoogle Scholar
  23. Gower DJ, Kupfer A, Oommen OV, Himstedt W, Nussbaum RA, Loader SP, Presswell B, Müller H, Krishna SB, Boistel R, Wilkinson M (2002) A molecular phylogeny of ichthyophiid caecilians (Amphibia: Gymnophiona: Ichthyophiidae): out of India or out of South East Asia? Proc R Soc Lond-Biol Sci 269:1563–1569CrossRefGoogle Scholar
  24. Hoffstetter R (1977) Phylogénie des primates: confrontation des résultats obtenus par les diverses voies d’approche du problème. Bull Mém Soc Anthropol Paris 4:327–346CrossRefGoogle Scholar
  25. Hooker JJ (2001) Tarsal of the extinct insectivoran family Nyctitheriidae (Mammalia): evidence for archontan relationships. Zool J Linn Soc 132:501–529CrossRefGoogle Scholar
  26. Horovitz I (2000) The tarsus of Ukhaatherium nessovi (Eutheria, Mammalia) from the Late Cretaceous of Mongolia: an appraisal of the evolution of the ankle in basal therians. J Vertebr Paleontol 20:547–560CrossRefGoogle Scholar
  27. Horovitz I (2003) Postcranial skeleton of Ukhaatherium nessovi (Eutheria, Mammalia) from the Late Cretaceous of Mongolia. J Vertebr Paleontol 23:857–868CrossRefGoogle Scholar
  28. Janečka JE, Miller W, Pringle TH, Wiens F, Zitzmann A, Helgen KM, Springer MS, Murphy WJ (2007) Molecular and genomic data identify the closest living relative of primates. Science 318:792–794CrossRefPubMedGoogle Scholar
  29. Khosla A, Prasad GVR, Verma O, Jain AK, Sahni A (2004) Discovery of a micromammal-yielding Deccan intertrapean site near Kisalpuri, Dindori District, Madhya Pradesh. Curr Sci 87:380–383Google Scholar
  30. Krause DW, Jenkins FA Jr (1983) The postcranial skeleton of North American multituberculates. Bull Mus Comp Zool 150:199–246Google Scholar
  31. Krause DW, Maas MC (1990) The biogeographic origins of late Paleocene–early Eocene mammalian immigrants to the Western Interior of North America. In: Bown TM, Rose KD (eds) Dawn of the age of mammals in the northern part of the Rocky Mountain Interior, North America. Geol Soc Am Spec Pap 243. Geological Society of America, Boulder, pp 71–105Google Scholar
  32. Krause DW, O’Connor PM, Curry Rogers K, Sampson SD, Buckley GA, Rogers RR (2006) Late Cretaceous terrestrial vertebrates from Madagascar: implications for Latin American biogeography. Ann Mo Bot Gard 93:178–208CrossRefGoogle Scholar
  33. Kumazawa Y, Nishida M (2000) Molecular phylogeny of osteoglossoids: a new model for Gondwanian origin and plate tectonic transportation of Asian arowana. Mol Biol Evol 17:1869–1873PubMedGoogle Scholar
  34. Macey JR, Schulte JA II, Larson A, Ananjeva NB, Wang Y, Pethiyagoda R, Rastegar-Pouyani N, Papenfuss TJ (2000) Evaluating trans-Tethys migration: an example using acrodont lizard phylogenetics. Syst Biol 49:233–256CrossRefPubMedGoogle Scholar
  35. Marivaux L, Bocat L, Chaimanee Y, Jaeger J-J, Marandat B, Srisuk P, Tafforeau P, Yamee C, Welcomme J-L (2006) Cynocephalid dermopterans from the Palaeogene of South Asia (Thailand, Myanmar and Pakistan): systematic, evolutionary and palaeobiogeographic implications. Zool Scr 35:395–420CrossRefGoogle Scholar
  36. McKenna MC (1973) Sweepstakes, filters, corridors, Noah’s Arks, and Beached Viking Funeral ships in palaeogeography. In: Tarling SH, Runcorn SK (eds) Implications of continental drift to the earth sciences. Academic, London, pp 293–306Google Scholar
  37. Meng J, Hu Y, Li C (2003) The osteology of Rhombomylus (Mammalia, Glires): implications for phylogeny and evolution of Glires. Bull Am Mus Nat Hist 275:1–248CrossRefGoogle Scholar
  38. Morley RJ, Dick CW (2003) Missing fossils, molecular clocks, and the origin of the Melastomataceae. Am J Bot 90:1638–1644CrossRefGoogle Scholar
  39. Murphy WJ, Collier GE (1997) A molecular phylogeny for aplocheiloid fishes (Atherinomorpha, Cyprinodontiformes): the role of vicariance and the origins of annualism. Mol Biol Evol 14:790–799PubMedGoogle Scholar
  40. Prasad GVR, Godinot M (1994) Eutherian tarsal bones from the Late Cretaceous of India. J Paleontol 68:892–902Google Scholar
  41. Prasad GVR, Rage J-C (1995) Ampibians and squamates from the Maastrichtian of Naskal, India. Cretac Res 16:95–107CrossRefGoogle Scholar
  42. Prasad GVR, Sahni A (1988) First Cretaceous mammal from India. Nature 332:638–640CrossRefGoogle Scholar
  43. Prasad GVR, Jaeger J-J, Sahni A, Gheerbrant E, Khajuria CK (1994) Eutherian mammals from the Upper Cretaceous (Maastrichtian) intertrappean beds of Naskal, Andhra Pradesh, India. J Vertebr Paleontol 14:260–277Google Scholar
  44. Prasad GVR, Verma O, Gheerbrant E, Goswami A, Khosla A, Parmar V, Sahni A (2010) First mammal evidence from the Late Cretaceous of India for biotic dispersal between India and Africa at the KT transition. C R Palevol (in press)Google Scholar
  45. Prasad GVR, Verma O, Sahni A, Krause DW, Khosla A, Parmar V (2007a) A new Late Cretaceous gondwanatherian mammal from central India. Proc Indian Natl Sci Acad 73:17–24Google Scholar
  46. Prasad GVR, Verma O, Sahni A, Parmar V, Khosla A (2007b) A Cretaceous hoofed mammal from India. Science 318:937CrossRefPubMedGoogle Scholar
  47. Rana RS, Wilson GP (2003) New Late Cretaceous mammals from the Intertrappean beds of Rangapur, India and paleobiogeographic framework. Acta Palaeontol Pol 48:331–348Google Scholar
  48. Rose KD, Rana RS, Sahni A, Kumar K, Missiaen P, Singh L, Smith T (2009) Early Eocene primates from Gujarat, India. J Hum Evol 56:366–404CrossRefPubMedGoogle Scholar
  49. Rowley DB (1996) Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet Sci Lett 145:1–13CrossRefGoogle Scholar
  50. Russell DE (1964) Les Mammifères Paléocènes d’Europe. Mém Mus Natl Hist Nat, Sér C 13:1–324Google Scholar
  51. Sahni A, Kumar K, Hartenberger J-L, Jaeger J-J, Rage J-C, Sudre J, Vianey-Liaud M (1982) Microvértebrés nouveaux des Trapps du Deccan (Inde): mise en évidence d’une voie de communication terrestre probable entre la Laurasie et l’Inde à la limite Crétacé–Tertiaire. Bull Soc Géol Fr 24:1093–1099Google Scholar
  52. Sargis EJ (2002) Functional morphology of the forelimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J Morphol 253:10–42CrossRefPubMedGoogle Scholar
  53. Sigé B, Jaeger J-J, Sudre J, Vianey-Liaud M (1990) Altiatlasius koulchii n. gen. et sp., primate omomyidé du Paléocène supérieur du Maroc, et les origines des euprimates. Palaeontogr Abt A 214:31–56Google Scholar
  54. Silcox MT, Bloch JI, Sargis EJ, Boyer DM (2005) Euarchonta (Dermoptera, Scandentia, Primates). In: Rose KD, Archibald JD (eds) The rise of placental mammals: origins and relationships of the major extant clades. The Johns Hopkins University Press, Baltimore, pp 127–144Google Scholar
  55. Singh RS, Kar R, Prasad GVR (2006) Palynological constraints on the age of mammal-yielding Deccan intertrappean beds of Naskal, Rangareddi district, Andhra Pradesh. Curr Sci 90(1):1281–1285Google Scholar
  56. Sloan RE, Van Valen L (1965) Cretaceous mammals from Montana. Science 148:220–227CrossRefPubMedGoogle Scholar
  57. Smith T, Rose KD, Gingerich PD (2006) Rapid Asia–Europe–North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene–Eocene thermal maximum. Proc Natl Acad Sci USA 103:11223–11227CrossRefPubMedGoogle Scholar
  58. Smith T, De Bast E, Sigé B (2009) Adapisoriculid mammals from the Paleocene of Hainin (Belgium) shed light on the phylogenetic affinities of the enigmatic arboreal Cretaceous Deccanolestes from the Deccan Traps of India. J Vertebr Paleontol 29:183AGoogle Scholar
  59. Springer MS, Murphy WJ, Eizirik E, O’Brien SJ (2003) Placental mammal diversification and the Cretaceous–Tertiary boundary. Proc Natl Acad Sci USA 100:1056–1061CrossRefPubMedGoogle Scholar
  60. Storch G (2008) Skeletal remains of a diminutive primate from the Paleocene of Germany. Naturwissenschaften 95:927–930CrossRefPubMedGoogle Scholar
  61. Szalay FS, Dagosto M (1980) Locomotor adaptations as reflected on the humerus of Paleogene primates. Folia Primatol 34:1–45CrossRefPubMedGoogle Scholar
  62. Szalay FS, Lucas SG (1996) The postcranial morphology of Paleocene Chriacus and Mixodectes and the phylogenetic relationships of archontan mammals. New Mex Mus Nat Hist Sci Bull 7:1–47Google Scholar
  63. Szalay FS, Sargis EJ (2001) Model-based analysis of postcranial osteology of marsupials from the Palaeocene of Itaboraí (Brazil) and the phylogenetics and biogeography of Metatheria. Geodiversitas 23:139–302Google Scholar
  64. Tong Y-S (1988) Fossil tree shrews from the Eocene Hetaoyuan Formation of Xichuan, Henan. Vertebr PalAsiat 26:214–220Google Scholar
  65. Van Valen L, Sloan RE (1965) The earliest primates. Science 150:743–745CrossRefPubMedGoogle Scholar
  66. Vandamme D, Courtillot V, Montigny R, Besse J (1991) Paleomagnetism and age determinations of the Deccan traps (India): results of the Nagpur–Bombay traverse and review of earlier work. Rev Geophys 29:159–190CrossRefGoogle Scholar
  67. Waddell PJ, Okada N, Hasegawa M (1999) Towards resolving the interordinal relationships of placental mammals. Syst Biol 48:1–5CrossRefPubMedGoogle Scholar
  68. Whatley RC, Bajpai S (2006) Extensive endemism among the Maastrichtian non-marine Ostracoda of India with implications for palaeobiogeography and “Out of India” dispersal. Rev Esp Micropaleontol 38:229–244Google Scholar
  69. Wible JR, Rougier GW, Novacek MJ, Asher RJ (2007) Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature 447:1003–1006CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Doug M. Boyer
    • 1
  • Guntupalli V. R. Prasad
    • 2
  • David W. Krause
    • 3
  • Marc Godinot
    • 4
  • Anjali Goswami
    • 5
  • Omkar Verma
    • 6
  • John J. Flynn
    • 7
  1. 1.Department of Ecology and EvolutionStony Brook UniversityStony BrookUSA
  2. 2.Department of GeologyUniversity of DelhiDelhiIndia
  3. 3.Department of Anatomical SciencesStony Brook UniversityStony BrookUSA
  4. 4.Ecole Pratique des Hautes Etudes, UMR 7207ParisFrance
  5. 5.Department of Genetics, Evolution, and EnvironmentUniversity College LondonLondonUK
  6. 6.School of Biosciences & BiotechnologyBaba Ghulam Shah Badshah UniversityRajouriIndia
  7. 7.Division of Paleontology and Richard Gilder Graduate SchoolAmerican Museum of Natural HistoryNew YorkUSA

Personalised recommendations