Naturwissenschaften

, Volume 97, Issue 2, pp 229–233 | Cite as

Bees use three-dimensional information to improve target detection

  • Alexander Kapustjansky
  • Lars Chittka
  • Johannes Spaethe
SHORT COMMUNICATION

Abstract

Bumblebee detection of a flat circular disc (two-dimensional (2D) presentation) and a disc which was presented 10 cm in front of a structured background (and thus provided three-dimensional (3D) cues) was compared. A dual choice test using a Y-maze apparatus was conducted to estimate the minimum visual angle at which the bees were able to detect the disc. At large visual angles of 15, 10 and 5° bees’ performance between the 2D and the 3D presentation did not differ. However, when the disc subtended 3° at the bee’s eye, the bees performed significantly better when 3D information was available. Overall, bees were able to detect a target subtending a 40% smaller visual angle when it was presented in front of the structured background compared to a 2D presentation. This suggests that previous reports on the limits of target detection in bees using flat stimuli might have underestimated the bees’ ability to locate small flowers under natural conditions. Bees use motion parallax, i.e. the apparent relative motion of a stationary object against a background, for perceiving the third dimension. Our data suggest that bumblebees can integrate information from at least two types of feature detectors, motion and area, to improve single target detection.

Keywords

Bombus terrestris Flower detection Motion parallax Visual perception 3D vision 

References

  1. Chittka L, Dyer AG, Bock F, Dornhaus A (2003) Bees trade off foraging speed for accuracy. Nature 424:338CrossRefGoogle Scholar
  2. Dyer AG, Spaethe J, Prack S (2008) Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. J Comp Physiol A 194:617–627CrossRefGoogle Scholar
  3. Giurfa M, Vorobyev MV (1998) The angular range of achromatic target detection by honeybees. J Comp Physiol A 183:101–110CrossRefGoogle Scholar
  4. Giurfa M, Vorobyev M, Kevan P, Menzel R (1996) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178:699–709CrossRefGoogle Scholar
  5. Giurfa M, Vorobyev M, Brandt R, Posner B, Menzel R (1997) Discrimination of coloured stimuli by honeybees: alternative use of achromatic and chromatic signals. J Comp Physiol A 180:235–243CrossRefGoogle Scholar
  6. Gumbert A, Kunze J, Chittka L (1999) Floral colour diversity in plant communities, bee colour space and a null model. Proc R Soc B 266:1711–1716CrossRefGoogle Scholar
  7. Hempel de Ibarra N, Vorobyev M (2009) Flower patterns are adapted for detection by bees. J Comp Physiol A 195:319–323CrossRefGoogle Scholar
  8. Julesz B (1960) Binocular depth perception of computer-generated patterns. Bell Syst Tech J 39:1125–1162Google Scholar
  9. Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Ann Rev Entomol 28:407–453CrossRefGoogle Scholar
  10. Lehrer M (1998) Looking all around: honeybees use different cues in different eye regions. J Exp Biol 201:3275–3292PubMedGoogle Scholar
  11. Lehrer M, Bischof S (1995) Detection of model flowers by honeybees: the role of chromatic and achromatic contrast. Naturwissenschaften 82:145–147CrossRefGoogle Scholar
  12. Macuda T, Gegear RJ, Laverty TM, Timney B (2001) Behavioural assessment of visual acuity in bumblebees (Bombus impatiens). J Exp Biol 204:559–564PubMedGoogle Scholar
  13. McKee SP, Watamaniuk SN, Harris JM, Smallman HS, Taylor DG (1997) Is stereopsis effective in breaking camouflage for moving targets? Vis Res 37:2047–2055CrossRefPubMedGoogle Scholar
  14. Menzel R, Shmida A (1993) The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. Biol Rev 68:81–120CrossRefGoogle Scholar
  15. Ne’eman G, Kevan PG (2001) The effect of shape parameters on maximal detection distance of model targets by honeybee workers. J Comp Physiol A 187:653–660CrossRefPubMedGoogle Scholar
  16. Paulk AC, Phillips-Portillo J, Dacks AM, Fellous JM, Gronenberg W (2008) The processing of color, motion, and stimulus timing are anatomically segregated in the bumblebee brain. J Neurosci 28:6319–6332CrossRefPubMedGoogle Scholar
  17. Paulk AC, Dacks AM, Phillips-Portillo J, Fellous JM, Gronenberg W (2009) Visual processing in the central bee brain. J Neurosci 29:9987–9999CrossRefPubMedGoogle Scholar
  18. Pettigrew JD (1986) The evolution of binocular vision. In: Pettigrew JD, Sanderson KJ, Levick WR (eds) Visual neuroscience. Cambridge University Press, Cambridge, pp 2008–2222Google Scholar
  19. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  20. Spaethe J, Chittka L (2003) Interindividual variation of eye optics and single object resolution in bumblebees. J Exp Biol 206:3447–3453CrossRefPubMedGoogle Scholar
  21. Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Natl Acad Sci U S A 98:3898–3903CrossRefPubMedGoogle Scholar
  22. Srinivasan MV, Lehrer M, Horridge GA (1990) Visual figure–ground discrimination in the honeybee: the role of motion parallax at boundaries. Proc R Soc Lond 238:331–350CrossRefGoogle Scholar
  23. Streinzer M, Paulus HF, Spaethe J (2009) Floral colour signal increases short-range detectability of a sexually deceptive orchid to its bee pollinator. J Exp Biol 212:1365–1370CrossRefPubMedGoogle Scholar
  24. Vogel S (1954) Blütenbiologische Typen als Elemente der Sippengliederung: Dargestellt anhand der Flora Südafrikas. Botanische Studien 1:1–339Google Scholar
  25. Wolf E (1933) Das Verhalten der Bienen gegenüber flimmernden Feldern und bewegten Objekten. Z vergl Physiol 20:151–161CrossRefGoogle Scholar
  26. Zhang SW, Wang XA, Liu ZL, Srinivasan MV (1990) Visual tracking of moving targets by freely flying honeybees. Vis Neurosci 4:379–386CrossRefPubMedGoogle Scholar
  27. Zhang SW, Srinivasan MV, Collett TS (1995) Convergent processing in honeybee vision: multiple channels for the recognition of shape. Proc Natl Acad Sci U S A 92:3029–3031CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Alexander Kapustjansky
    • 1
    • 2
  • Lars Chittka
    • 3
  • Johannes Spaethe
    • 1
  1. 1.Department of Evolutionary BiologyUniversity of ViennaViennaAustria
  2. 2.Lehrstuhl für Genetik und NeurobiologieUniversity of WürzburgWürzburgGermany
  3. 3.Research Centre for Psychology, School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK

Personalised recommendations