Naturwissenschaften

, 96:1247 | Cite as

Charles Darwin’s Origin of Species, directional selection, and the evolutionary sciences today

REVIEW

Abstract

The book On the Origin of Species, published in November 1859, is an “abstract” without references, compiled by Charles Darwin from a much longer manuscript entitled “Natural Selection.” Here, I summarize the five theories that can be extracted from Darwin’s monograph, explain the true meaning of the phrase “struggle for life” (i.e., competition and cooperation), and outline Darwin’s original concept of natural selection in populations of animals and plants. Since neither Darwin nor Alfred R. Wallace distinguished between stabilizing and directional natural selection, the popular argument that “selection only eliminates but is not creative” is still alive today. However, I document that August Weismann (Die Bedeutung der sexuellen Fortpflanzung für die Selektions-Theorie. Gustav Fischer-Verlag, Jena, 1886) and Ivan Schmalhausen (Factors of evolution. The theory of stabilizing selection. The Blackiston Company, Philadelphia, 1949) provided precise definitions for directional (dynamic) selection in nature and illustrate this “Weismann–Schmalhausen principle” with respect to the evolutionary development of novel phenotypes. Then, the modern (synthetic) theory of biological evolution that is based on the work of Theodosius Dobzhansky (Genetics and the origin of species. Columbia University Press, New York, 1937) and others, and the expanded version of this system of theories, are outlined. Finally, I document that symbiogenesis (i.e., primary endosymbiosis, a process that gave rise to the first eukaryotic cells), ongoing directional natural selection, and the dynamic Earth (plate tectonics, i.e., geological events that both created and destroyed terrestrial and aquatic habitats) were the key processes responsible for the documented macroevolutionary patterns in all five kingdoms of life. Since the evolutionary development of the earliest archaic bacteria more than 3,500 mya, the biosphere of our dynamic planet has been dominated by prokaryotic microbes. Eubacteria, Archaea, and Cyanobacteria are, together with eukaryotic microorganisms (marine phytoplankton, etc.), the hidden “winners” in the Darwinian struggle for existence in nature.

Keywords

Charles Darwin Evolutionary biology Natural selection Symbiogenesis Synthetic theory 

References

  1. Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459:185–192PubMedCrossRefGoogle Scholar
  2. Ayala FJ (2007) Darwin’s greatest discovery: design without designer. Proc Natl Acad Sci U S A 104:8567–8573PubMedCrossRefGoogle Scholar
  3. Barlow N (ed) (1958) The autobiography of Charles Darwin. Collins, LondonGoogle Scholar
  4. Barrett PH, Corcos AF (1972) A letter from Alexander Humboldt to Charles Darwin. J Hist Med Allied Sci 72:150–172Google Scholar
  5. Bell G (2008) Selection: the mechanism of evolution, 2nd edn. Chapman and Hall, New YorkGoogle Scholar
  6. Beutel R, Friedrich F, Leschen RAB (2009) Charles Darwin, beetles, and phylogenetics. Naturwissenschaften. doi:10.1007/s00114-009-0601-2
  7. Birchler JA, Veitia RA (2007) The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19:395–402PubMedCrossRefGoogle Scholar
  8. Birney E (2007) Evolutionary genomics: come fly with us. Nature 450:184–185PubMedCrossRefGoogle Scholar
  9. Bowler PJ (2003) Evolution: the history of an idea, 3rd edn. The University of California Press, BerkeleyGoogle Scholar
  10. Brodie ED, Moore AJ, Janzen TJ (1999) Visualizing and quantifying natural selection. Trends Ecol Evol 10:313–318CrossRefGoogle Scholar
  11. Bronn HG (1860) Schlusswort des Übersetzers. In: Darwin C (ed) Über die Entstehung der Arten, übersetzt von HG Bronn nach der 2. Auflage. E. Schweizerbart’sche Verlagshandlung und Druckerei, StuttgartGoogle Scholar
  12. Bueckers PG (1909) Die Abstammungslehre. Eine allgemeinverständliche Darstellung und Übersicht der verschiedenen Theorien mit besonderer Berücksichtigung der Mutationstheorie. Verlag von Quelle & Meyer, LeipzigGoogle Scholar
  13. Carroll RL (2000) Towards a new evolutionary synthesis. Trends Ecol Evol 15:27–32PubMedCrossRefGoogle Scholar
  14. Carroll SB (2006) The making of the fittest. DNA and the ultimate forensic record of evolution. Norton, New YorkGoogle Scholar
  15. Conway Morris S (2009) The predictability of evolution: glimpses into a post-Darwinian world. Naturwissenschaften. doi:10.1007/s00114-009-0607-9
  16. Coyne JA, Orr HA (2004) Speciation. Sinauer, SunderlandGoogle Scholar
  17. Crane JA (2009) Time’s stamp on modern biogeography. Science 323:720–721CrossRefGoogle Scholar
  18. Dalrymple GB (2004) Ancient Earth, ancient skies. The age of Earth and its cosmic surroundings. Stanford University Press, StanfordGoogle Scholar
  19. Darwin C (1839) Journal of researches into the geology and natural history of the various countries visited by H. M. S. Beagle. Henry Colburn, LondonGoogle Scholar
  20. Darwin C (1851/1854) A monograph of the sub-class Cirripedia, with figures of all the species, vols 1 and 2. Ray Society, LondonGoogle Scholar
  21. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  22. Darwin C (1868) The variation of animals and plants under domestication (vols 1 and 2). John Murray, LondonGoogle Scholar
  23. Darwin C (1871) The descent of man, and selection in relation to sex (vols 1 and 2). John Murray, LondonGoogle Scholar
  24. Darwin C (1872a) The origin of species by means of natural selection, or, the preservation of favoured races in the struggle for life, 6th edn. John Murray, LondonGoogle Scholar
  25. Darwin C (1872b) The expression of the emotions in man and animals. John Murray, LondonCrossRefGoogle Scholar
  26. Darwin F (ed) (1909) The foundation of the Origin of Species. Two essays in 1842 and 1844 by Charles Darwin. Cambridge University Press, CambridgeGoogle Scholar
  27. Darwin C, Wallace A (1858) On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. Proc Linn Soc Lond 3:45–63Google Scholar
  28. Desmond A, Moore J (1991) Charles Darwin: the life of a tormented evolutionist. Warner, New YorkGoogle Scholar
  29. DeVries H (1901) Die Mutationstheorie. Band 1. Die Entstehung von Arten durch Mutation. Veit, LeipzigGoogle Scholar
  30. Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  31. Dobzhansky T (1946) Genetic structure of natural populations. Year Book Carnegie Inst Wash 45:162–171Google Scholar
  32. Dobzhansky T (1949) Genetic structure of natural populations. Year Book Carnegie Inst Wash 48:201–213Google Scholar
  33. Dobzhansky T (1955) Evolution, genetics and man. Wiley, New YorkGoogle Scholar
  34. Dobzhansky T (1972) Species of Drosophila: new excitement in an old field. Science 177:664–669PubMedCrossRefGoogle Scholar
  35. Dobzhansky T, Ayala F, Stebbins GL, Valentine JW (1977) Evolution. Freeman, San FranciscoGoogle Scholar
  36. Endler JA (1986) Natural selection in the wild. Princeton University Press, PrincetonGoogle Scholar
  37. Engels E-M (2005) Charles Darwin’s moral sense—on Darwin’s ethics of non-violence. Ann Hist Phil Biol 10:31–54Google Scholar
  38. Follmann H, Brownson C (2009) Darwin’s warm little pond revisited: from molecules to the origin of life. Naturwissenschaften. doi:10.1007/s00114-009-0602-1
  39. Goldschmidt R (1940) The material basis of evolution. Yale University Press, New HavenGoogle Scholar
  40. Gould SJ (2002) The structure of evolutionary theory. Cambridge University Press, CambridgeGoogle Scholar
  41. Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711PubMedCrossRefGoogle Scholar
  42. Grant PR, Grant BR (2008) How and why species multiply. The radiation of Darwin’s finches. Princeton University Press, PrincetonGoogle Scholar
  43. Gregory TR (2009) Understanding natural selection: essential concepts and common causes. Evo Edu Outreach 2:156–175CrossRefGoogle Scholar
  44. Haeckel E (1866) Generelle Morphologie der Organismen. Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformierte Descendenztheorie. Band 1 und 2. DeGruyter, BerlinGoogle Scholar
  45. Haffer J (2007) Ornithology, evolution, and philosophy: the life and science of Ernst Mayr 1904–2005. Springer, BerlinGoogle Scholar
  46. Haldane JBS (1959) The theory of natural selection today. Nature 183:710–713PubMedCrossRefGoogle Scholar
  47. Harrison JWH (1920) General studies on the moths of the Geometrid genus Oporabia (Oporinia) with a special consideration of melanism in the Lepidoptera. J Genet 9:195–280CrossRefGoogle Scholar
  48. Hazen RM, Papineau D, Bleeker W, Downs RT, Ferry JM, McCoy TJ, Sverjensky DA, Yang H (2008) Mineral evolution. Am Mineral 93:1693–1720CrossRefGoogle Scholar
  49. Helsen P, Browne RA, Anderson DA, Verdyck P, Van Dougen S (2009) Galapagos Opuntia (prickly pear) cacti: extensive morphological diversity, low genetic variability. Biol J Linn Soc 96:451–461CrossRefGoogle Scholar
  50. Hendry AP (2009) Evolutionary biology: speciation. Nature 458:162–164PubMedCrossRefGoogle Scholar
  51. Herrada EA, Tessone CJ, Klemm K, Eguiluz VM, Hernandez-Careia E, Duarte CM (2008) Universal scaling of the tree of life. Plos One 3:e2757PubMedCrossRefGoogle Scholar
  52. Huxley JS (1942) Evolution: the modern synthesis. Allen and Unwin, LondonGoogle Scholar
  53. Jackson ST (2009) Alexander von Humboldt and the general physics of the Earth. Science 324:596–597PubMedCrossRefGoogle Scholar
  54. Kettlewell HBD (1955) Selection experiments on industrial melanism in the Lepidoptera. Heredity 9:323–342CrossRefGoogle Scholar
  55. Klingsolver JG, Pfennig DW (2007) Patterns and power of phenotypic selection in nature. Bioscience 57:561–572CrossRefGoogle Scholar
  56. Kutschera U (2003) A comparative analysis of the Darwin–Wallace papers and the development of the concept of natural selection. Theory Biosci 122:343–349Google Scholar
  57. Kutschera U (2004) Species concepts: leeches versus bacteria. Lauterbornia 52:171–175Google Scholar
  58. Kutschera U (2008a) Darwin–Wallace principle of natural selection. Nature 453:27PubMedCrossRefGoogle Scholar
  59. Kutschera U (2008b) From Darwinism to evolutionary biology. Science 321:1157–1158PubMedCrossRefGoogle Scholar
  60. Kutschera U (2009a) Symbiogenesis, natural selection, and the dynamic Earth. Theory Biosci. doi:10.1007/s12064-009-0065-0 PubMedGoogle Scholar
  61. Kutschera U (2009b) Struggle to translate Darwin’s view of concurrency. Nature 458:967PubMedCrossRefGoogle Scholar
  62. Kutschera U, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276PubMedCrossRefGoogle Scholar
  63. Kutschera U, Niklas KJ (2005) Endosymbiosis, cell evolution, and speciation. Theory Biosci 124:1–24PubMedCrossRefGoogle Scholar
  64. Kutschera U, Niklas KJ (2008) Macroevolution via secondary endosymbiosis: a Neo Goldschmidtian view of unicellular hopeful monsters and Darwin’s primordial intermediate form. Theory Biosci 127:277–289PubMedCrossRefGoogle Scholar
  65. Kutschera U, Niklas KJ (2009) Evolutionary plant physiology: Charles Darwin’s forgotten synthesis. Naturwissenschaften. doi:10.1007/s00114-009-0604-z
  66. Kutschera U, Wirtz P (2001) The evolution of parental care in freshwater leeches. Theory Biosci 120:115–137Google Scholar
  67. Lamarck J-B de (1809) Philosophie Zoologique. Verdiere, ParisGoogle Scholar
  68. Levit GS, Hossfeld U, Olsson L (2004) The integration of darwinism and evolutionary morphology: Alexej Nikolajevich Sewertzoff (1866–1936) and the developmental basis of evolutionary change. J Exp Zool B Mol Dev Evol 302B:343–354CrossRefGoogle Scholar
  69. Levit GS, Hossfeld U, Olsson L (2005) From the “modern synthesis” to cybernetics: Ivan Ivanovich Schmalhausen (1884–1963) and his research program for a synthesis of evolutionary and developmental biology. J Exp Zool B Mol Dev Evol 306B:89–106CrossRefGoogle Scholar
  70. Losos JB, Ricklefs RE (2009) Adaptation and diversification on islands. Nature 457:830–836PubMedCrossRefGoogle Scholar
  71. Love AC (2009) Marine invertebrates, model organisms, and the modern synthesis: epistemic values, evo-devo, and exclusion. Theory Biosci 128:19–42PubMedCrossRefGoogle Scholar
  72. Majerus MEN (2009) Industrial melanism in the peppered moth, Biston betularia: an excellent teaching example of Darwinian evolution in action. Evo Edu Outreach 2:63–74CrossRefGoogle Scholar
  73. Mascarelli AL (2009) Low life. Nature 459:770–773CrossRefGoogle Scholar
  74. Mayr E (1942) Systematics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  75. Mayr E (1991) One long argument: Charles Darwin and the genesis of modern evolutionary though. Harvard University Press, CambridgeGoogle Scholar
  76. Mayr E (2004) What makes biology unique? Considerations on the autonomy of a scientific discipline. Cambridge University Press, CambridgeGoogle Scholar
  77. Newman WA (1993) Darwin and cirripedology. Crustac Issues 8:349–434Google Scholar
  78. Niklas KJ (1997) The evolutionary biology of plants. University of Chicago Press, ChicagoGoogle Scholar
  79. Niklas KJ, Kutschera U (2009) The evolutionary development of plant body plans. Funct Plant Biol 36:682–695CrossRefGoogle Scholar
  80. Paterson H (2005) The competitive Darwin. Paleobiology 31:56–74CrossRefGoogle Scholar
  81. Preyer WT (1885) Spezielle Physiologie des Embryos. Untersuchungen über die Lebenserscheinungen vor der Geburt. Th. Grieben’s Verlag, LeipzigGoogle Scholar
  82. Reif W-E, Junker T, Hoßfeld U (2000) The synthetic theory of evolution: general problems and the German contribution to the synthesis. Theory Biosci 119:41–91Google Scholar
  83. Rensch B (1947) Neuere Probleme der Abstammungslehre. Die transspezifische Evolution. Enke, StuttgartGoogle Scholar
  84. Rieseberg LH, Widmer A, Arntz AM, Burke JM (2002) Directional selection is the primary cause of phenotypic diversification. Proc Natl Acad Sci U S A 99:12242–12245PubMedCrossRefGoogle Scholar
  85. Rieseberg LH, Wood TE, Baack EJ (2006) The nature of plant species. Nature 440:524–527PubMedCrossRefGoogle Scholar
  86. Rödl T, Berger S, Romero LM, Wikelski M (2007) Tameness and stress physiology in a predator-naive island species confronted with novel predation threat. Proc R Soc Lond B Biol Sci 274:577–582CrossRefGoogle Scholar
  87. Roth T, Kutschera U (2008) Darwin’s hypotheses on the origin of domestic animals and the history of German shepherd dogs. Ann Hist Philos Biol 13:175–187Google Scholar
  88. Schmalhausen II (1949) Factors of evolution. The theory of stabilizing selection. Blackiston, PhiladelphiaGoogle Scholar
  89. Schopf JW (2006) Fossil evidence of Archaean life. Philos Trans R Soc Lond B 361:869–885CrossRefGoogle Scholar
  90. Scott EC, Branch G (2009) Don’t call it “Darwinism”. Evo Edu Outreach 2:90–94CrossRefGoogle Scholar
  91. Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New YorkGoogle Scholar
  92. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New YorkGoogle Scholar
  93. Tice MM, Lowe DR (2004) Photosynthetic microbiol mats in the 3416-Myr-old ocean. Nature 431:549–552PubMedCrossRefGoogle Scholar
  94. Tower WL (1906) An investigation of evolution in chrysomelid beetles of the genus Leptinotarsa. Carnegie Institution of Washington Publication, WashingtonGoogle Scholar
  95. Tower WL (1918) The mechanism of evolution in Leptinotarsa. Carnegie Institution of Washington Publication, WashingtonGoogle Scholar
  96. Vieites DR, Nieto-Roman S, Barluenga M, Palanca A, Vences M, Meyer A (2004) Post-mating clutch piracy in an amphibian. Nature 431:305–308PubMedCrossRefGoogle Scholar
  97. Wegener A (1929) Die Entstehung der Kontinente und Ozeane, 4th edn. Vieweg & Sohn, BraunschweigGoogle Scholar
  98. Weismann A (1886) Die Bedeutung der sexuellen Fortpflanzung für die Selektions-Theorie. Gustav Fischer-Verlag, JenaGoogle Scholar
  99. Weismann A (1892) Das Keimplasma. Eine Theorie der Vererbung. Gustav Fischer-Verlag, JenaGoogle Scholar
  100. Weismann A (1904) Vorträge über Abstammungslehre. Gustav Fischer-Verlag, JenaGoogle Scholar
  101. Werner R (2000) Ein Hotspot und Inselvulkanismus: Zur geologischen Entwicklung der Galapagosinseln. Sber Ges Naturf Freunde Berlin (NF) 39:5–24Google Scholar
  102. Wikelski M (2005) Evolution of body size in Galapagos marine iguanas. Proc R Soc Lond B Biol Sci 272:1985–1993CrossRefGoogle Scholar
  103. Willis JH (2009) Origin of species in overdrive. Science 323:350–351PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute of BiologyUniversity of KasselKasselGermany

Personalised recommendations