, Volume 96, Issue 11, pp 1265–1292 | Cite as

Darwin’s warm little pond revisited: from molecules to the origin of life

  • Hartmut FollmannEmail author
  • Carol Brownson


All known cosmic and geological conditions and laws of chemistry and thermodynamics allow that complex organic matter could have formed spontaneously on pristine planet Earth about 4,000 mya. Simple gasses and minerals on the surface and in oceans of the early Earth reacted and were eventually organized in supramolecular aggregates and enveloped cells that evolved into primitive forms of life. Chemical evolution, which preceded all species of extant organisms, is a fact. In this review, we have concentrated on experimental and theoretical research published over the last two decades, which has added a wealth of new details and helped to close gaps in our previous understanding of this multifaceted field. Recent exciting progress in the molecular and genetic analyses of existing life, in particular microorganisms of ancient origin, even supports the possibility that a cellular, self-reproducing common ancestor might be assembled and resurrected in anaerobic cultures at some time in the future. Charles Darwin did not, and indeed, could not, address and specify the earliest phases of life which preceded the Origin of Species. However, in a famous letter, he sketched “a warm little pond with all sorts of… (chemicals, in which) …a protein was chemically formed.” We try to trace the impact of his charming clear-sighted metaphor up to the present time.


Charles Darwin Chemical evolution DNA and RNA Iron–sulphur world Last universal ancestor Organic soups Origin of life Thermodynamics 



Vivid discussions with colleagues and friends, in particular Horst-Dieter Försterling, Peter Kaiser, Hans Kuhn, Ulrich Kutschera, Stanley Miller (deceased; La Jolla, CA, USA), Klaus-Heinrich Röhm, and Günter Wächtershäuser are greatly appreciated. The students attending summer academies on evolution at La Villa and Alpbach (Tyrol), sponsored by Studienstiftung, contributed many critical questions and stimulating ideas.


  1. Abramov O, Mojzsis SJ (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459:419–422PubMedCrossRefGoogle Scholar
  2. Bada JL (2001) State-of-art instruments for detecting extraterrestrial life. Proc Natl Acad Sci U S A 98:797–800PubMedCrossRefGoogle Scholar
  3. Beaulieu JP, PLANET Collaboration (2006) Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 439:437–439PubMedCrossRefGoogle Scholar
  4. Benner SA, Ellington AD (1987) The last ribo-organism. Nature 329:295–296PubMedCrossRefGoogle Scholar
  5. Bergmann ED, Pullman B (eds) (1972) The purines. Theory and experiment. The Israel Academy of Sciences and Humanities, JerusalemGoogle Scholar
  6. Blair NE, Bonner WA (1981) A model for the enantiomeric enrichment of polypeptides on the primitive earth. Orig Life 11:331–335PubMedCrossRefGoogle Scholar
  7. Böhler C, Nielsen PE, Orgel LE (1995) Template switching between PNA and RNA oligonucleotides. Nature 376:578–581PubMedCrossRefGoogle Scholar
  8. Bondy SC, Harrington ME (1979) l-Amino acids and d-glucose bind stereospecifically to a colloidal clay. Science 203:1243–1244PubMedCrossRefGoogle Scholar
  9. Bossard AR, Raulin F, Mourey D, Toupance G (1982) Organic synthesis from reducing models of the atmosphere of the primitive earth with UV light and electric discharges. J Mol Evol 18:173–178PubMedCrossRefGoogle Scholar
  10. Boussau B, Blanquart S, Necsuela A, Lartillot N, Gouy M (2008) Parallel adaptations to high temperatures in the Archaen eon. Nature 456:942–945PubMedCrossRefGoogle Scholar
  11. Brandes JA, Boctor NZ, Cody GD, Cooper BA, Hazen RM, Yodor HS (1998) Abiotic nitrogen reduction on the early Earth. Nature 395:365–367PubMedCrossRefGoogle Scholar
  12. Calvin M (1969) Chemical evolution. Oxford University Press, OxfordGoogle Scholar
  13. Carroll SB (2001) Chance and necessity: the evolution of morphological complexity and diversity. Nature 409:1102–1109PubMedCrossRefGoogle Scholar
  14. Cech TR (1987) The chemistry of self-splicing RNA and RNA enzymes. Science 236:1532–1539PubMedCrossRefGoogle Scholar
  15. Chyba C (1997) A left-handed solar system? Nature 389:234–235PubMedCrossRefGoogle Scholar
  16. Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132PubMedCrossRefGoogle Scholar
  17. Cleaves HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL (2008) A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig Life Evol Biosph 38:105–115PubMedCrossRefGoogle Scholar
  18. Cody GD, Boctor NZ, Filley TR, Hazen RM, Scott JH, Sharma A, Yoder HS (2000) Primordial carbonylated iron–sulfur compounds and the synthesis of pyruvate. Science 289:1337–1340PubMedCrossRefGoogle Scholar
  19. Darwin C (1859) The origin of species by means of natural selection or the preservation of favoured races in the struggle for life. Murray, LondonGoogle Scholar
  20. Drobner E, Huber H, Wächtershäuser G, Rose D, Stetter KO (1990) Pyrite formation linked with hydrogen evolution under anaerobic conditions. Nature 346:742–744CrossRefGoogle Scholar
  21. de Duve C (1987) Selection by differential molecular survival: a possible mechanism of early chemical evolution. Proc Natl Acad Sci U S A 84:8253–8256PubMedCrossRefGoogle Scholar
  22. de Duve C (1991) Blueprint for a cell: the nature and origin of life. Neil Patterson, BurlingtonGoogle Scholar
  23. Ducluzeau AL, van Lis R, Duval S, Russell MJ, Nitschke W (2009) Was nitric oxide the first deep electron sink? Trends Biochem Sci 34:9–15PubMedCrossRefGoogle Scholar
  24. Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523PubMedCrossRefGoogle Scholar
  25. Eigen M (1981) Darwin und die Molekularbiologie. Angew Chem 93:221–229CrossRefGoogle Scholar
  26. Eisner JA (2007) Water vapour and hydrogen in the terrestrial-planet-forming region of a protoplanetary disk. Nature 447:562–564PubMedCrossRefGoogle Scholar
  27. Engel MH, Macko SA (1997) Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature 389:265–268PubMedCrossRefGoogle Scholar
  28. Engel MH, Nagy B (1982) Distribution and enantiomeric composition of amino acids in the Murchison meteorite. Nature 296:837–840CrossRefGoogle Scholar
  29. Eschenmoser A, Dobler M (1992) Warum pentose- und nicht hexose-Nucleinsäuren? Teil I. Helv Chim Acta 75:218–259CrossRefGoogle Scholar
  30. Fegley B, Prinn RG, Hartman H, Watkins GH (1986) Chemical effects of large impacts on the Earth’s primitive atmosphere. Nature 319:305–307PubMedCrossRefGoogle Scholar
  31. Ferris JP, Ertem G (1993) Montmorillonite catalysis of RNA oligomer formation in aqueous solution. J Am Chem Soc 115:12270–12275PubMedCrossRefGoogle Scholar
  32. Ferris JP, Hagan WJ (1984) HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis. Tetrahedron 40:1093–1120PubMedCrossRefGoogle Scholar
  33. Ferris JP, Hill AR, Liu R, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381:59–61PubMedCrossRefGoogle Scholar
  34. Fletcher SP, Jagt RBC, Feringa BL (2007) An astrophysically relevant mechanism for amino acid enantiomer enrichment. Chem Commun 2007:2578–2580CrossRefGoogle Scholar
  35. Follmann H (1981) Chemie und Biochemie der evolution. Quelle und Meyer, HeidelbergGoogle Scholar
  36. Follmann H (1982) Deoxyribonucleotides and the emergence of DNA in molecular evolution. Naturwissenschaften 69:75–81PubMedCrossRefGoogle Scholar
  37. Follmann H (1986) Have deoxyribonucleotides and DNA been among the earliest biomolecules? Adv Space Res 6:33–38PubMedCrossRefGoogle Scholar
  38. Follmann H (2004) Deoxyribonucleotides: the unusual biochemistry and chemistry of DNA precursors. Chem Soc Rev 33:225–233PubMedCrossRefGoogle Scholar
  39. Folsome C, Brittain A (1981) Model protocells photochemically reduce carbonate to organic carbon. Nature 291:482–484CrossRefGoogle Scholar
  40. Försterling HD, Kuhn H, Tews KH (1972) Computermodell zur Bildung selbstorganisierender Systeme. Angew Chem 84:862–865CrossRefGoogle Scholar
  41. Fox SW (1980) Metabolic microspheres. Origins and evolution. Naturwissenschaften 67:378–383PubMedCrossRefGoogle Scholar
  42. Galtier N, Tourasse N, Gouy M (1999) A non-hyperthermophilic common ancestor to extant life forms. Science 283:220–221PubMedCrossRefGoogle Scholar
  43. Gaucher EA, Thomson JM, Burgan MF, Benner SA (2003) Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature 425:285–288PubMedCrossRefGoogle Scholar
  44. Gaucher EA, Govindarajan S, Ganesh OK (2008) Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature 451:704–707PubMedCrossRefGoogle Scholar
  45. Gesteland RF, Cech TR, Atkins JF (eds) (2006) The RNA world, 3rd edn, chapters 1–3, 7. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  46. Gil R, Silva FJ, Peretó J, Moya A (2004) Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68:518–537PubMedCrossRefGoogle Scholar
  47. Gilbert W (1986) The RNA world. Nature 319:618CrossRefGoogle Scholar
  48. Goesmann F, Rosenbauer H, Roll R, Szopa C, Raulin F, Sternberg R, Israel G, Meierhenrich U, Thiemann W, Munoz-Caro G (2007) COSAC, the cometary sampling and composition experiment. Space Sci Rev 128:257–280CrossRefGoogle Scholar
  49. Griffiths G (2007) Cell evolution and the problem of membrane topology. Nat Rev Mol Cell Biol 8:1018–1024PubMedCrossRefGoogle Scholar
  50. Gutfraind A, Kempf A (2008) Error-reducing structure of the genetic code indicates code origin in non-thermophilic organisms. Orig Life Evol Biosph 38:75–85PubMedCrossRefGoogle Scholar
  51. Halliday AN (2001) In the beginning. Nature 409:144–145 and references quoted thereinPubMedCrossRefGoogle Scholar
  52. Hargreaves WR, Mulvihill SJ, Deamer DW (1977) Synthesis of phospholipids and membranes in prebiotic conditions. Nature 266:78–80PubMedCrossRefGoogle Scholar
  53. Hardin G (1950) Darwin and the heterotroph hypothesis. Sci Mon 70:178–179Google Scholar
  54. Hartmann J, Brand MC, Dose K (1981) Formation of specific amino acid sequences during thermal polymerization of amino acids. BioSystems 13:141–147PubMedCrossRefGoogle Scholar
  55. Hayes JM (1996) The earliest memories of life on Earth. Nature 384:21–22PubMedCrossRefGoogle Scholar
  56. Hazen RM, Filley TR, Goodfriend GA (2001) Selective adsorption of l- and d-amino acids on calcite: implications for biochemical homochirality. Proc Natl Acad Sci U S A 98:5487–5490PubMedCrossRefGoogle Scholar
  57. Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276:245–247PubMedCrossRefGoogle Scholar
  58. Huber C, Wächtershäuser G (1998) Peptides by activation of amino acids with CO: implications for the origin of life. Science 281:670–672PubMedCrossRefGoogle Scholar
  59. Huber C, Wächtershäuser G (2006) Hydroxy and amino acids under possible Hadean, volcanic origin-of-life conditions. Science 314:630–632PubMedCrossRefGoogle Scholar
  60. Ishikawa K, Sato K, Shima Y, Urabe I, Yomo T (2004) Expression of a cascading genetic network within liposomes. FEBS Lett 576:387–390PubMedCrossRefGoogle Scholar
  61. Jacobsen SB (2003) How old is planet Earth? Science 300:1513–1514PubMedCrossRefGoogle Scholar
  62. Janda M, Morvova M, Machala Z, Morva I (2008) Study of plasma induced chemistry by DC discharges in CO2/N2/H2O mixtures above a water surface. Orig Life Evol Biosph 38:23–35PubMedCrossRefGoogle Scholar
  63. Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL (2008) The Miller volcanic spark discharge experiment. Science 322:404PubMedCrossRefGoogle Scholar
  64. Joyce GF (1998) Nucleic acid enzymes: playing with a fuller deck. Proc Natl Acad Sci U S A 95:5845–5847PubMedCrossRefGoogle Scholar
  65. Jungck JR, Fox SW (1973) Synthesis of oligonucleotides by proteinoid microspheres acting on ATP. Naturwissenschaften 60:425–427PubMedCrossRefGoogle Scholar
  66. Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926PubMedCrossRefGoogle Scholar
  67. Keefe AD, Miller SL (1995) Are polyphosphates or phosphate esters prebiotic reagents? J Mol Evol 41:693–702PubMedCrossRefGoogle Scholar
  68. Keefe AD, Miller SL, McDonald G, Bada J (1995a) Investigation of the prebiotic synthesis of amino acids and RNA bases from CO2 using FeS/H2S as a reducing agent. Proc Natl Acad Sci U S A 92:11904–11906CrossRefGoogle Scholar
  69. Keefe AD, Newton GL, Miller SL (1995b) A possible prebiotic synthesis of pantetheine, a precursor to coenzyme A. Nature 373:683–685CrossRefGoogle Scholar
  70. Kleinkauf H, van Liempt H, Palissa H, von Döhren H (1992) Biosynthese von Peptiden: Ein nichtribosomales system. Naturwissenschaften 79:153–162PubMedCrossRefGoogle Scholar
  71. Krishnamurthy R, Pitsch S, Minton M, Miculka C, Windhab N, Eschenmoser A (1996) Pyranosyl-RNA. Angew Chem 108:1619–1623CrossRefGoogle Scholar
  72. Kuhn H (1972) Selbstorganisation molekularer Systeme und die evolution des genetischen Apparates. Angew Chem 84:838–862CrossRefGoogle Scholar
  73. Kuhn H (1976) Model considerations for the origin of life. Naturwissenschaften 63:68–80PubMedCrossRefGoogle Scholar
  74. Kuhn H, Waser J (1981) Molekulare Selbstorganisation und Ursprung des Lebens. Angew Chem 93:495–515CrossRefGoogle Scholar
  75. Kuhn H, Försterling HD, Waldeck DH (2009) Principles of physical chemistry, 2nd edn, chapter 29: Origin of life - matter carrying information. Wiley-VCH, WeinheimGoogle Scholar
  76. Kutschera U (2009) Charles Darwin’s Origin of Species, directional selection, and the evolutionary sciences today. Naturwissenschaften doi: 10.1007/s00114-009-0603-0
  77. Kutschera U, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276PubMedCrossRefGoogle Scholar
  78. Kvenvolden KA (1974) Geochemistry and the origin of life. Benchmark papers in geology, vol. 14. Dowden, Hutchinson & Ross, StroudsburgGoogle Scholar
  79. Laerdahl JK, Wesendrup R, Schwerdtfeger P (2000) d- or l-Alanine: that is the question. ChemPhysChem 2000:60–62CrossRefGoogle Scholar
  80. Lahav N, White D, Chang S (1978) Peptide formation in the prebiotic era. Science 201:67–69PubMedCrossRefGoogle Scholar
  81. Lazcano A, Miller SL (1994) How long did it take for life to begin and evolve to cyanoabacteria? J Mol Evol 39:546–554PubMedCrossRefGoogle Scholar
  82. Lee DH, Granja JR, Martinez JA, Severin K, Ghadiri MR (1996) A self-replicating peptide. Nature 382:525–528PubMedCrossRefGoogle Scholar
  83. Leman L, Orgel LE, Ghadiri MR (2004) Carbonyl sulfide-mediated prebiotic formation of peptides. Science 306:283–286PubMedCrossRefGoogle Scholar
  84. Leman LJ, Orgel LE, Ghadiri MR (2006) Amino acid dependent formation of phosphate anhydrides in water mediated by carbonyl sulfide. J Am Chem Soc 128:20–21PubMedCrossRefGoogle Scholar
  85. Lemmon RM (1970) Chemical evolution. Chem Rev 70:95–109CrossRefGoogle Scholar
  86. Löb W (1913) Über das Verhalten des Formamids unter der Wirkung der stillen Entladung. Ein Beitrag zur Frage der Stickstoff-Assimilation. Chem Ber 46:684–697CrossRefGoogle Scholar
  87. Lohrmann R, Bridson PK, Orgel LE (1980) Efficient metal-ion catalysed template-directed oligonucleotide synthesis. Science 208:1464–1465PubMedCrossRefGoogle Scholar
  88. Mansy SS, Schrum JP, Krishnamurty M, Tobé S, Treco DA, Szostak JW (2008) Template-directed synthesis of a genetic polymer in a model protocell. Nature 454:122–125PubMedCrossRefGoogle Scholar
  89. Mar A, Oró J (1991) Synthesis of the coenzymes ADP-glucose, GDP-glucose, and CDP-ethanolamine under primitive earth conditions. J Mol Evol 32:201–210PubMedCrossRefGoogle Scholar
  90. McLoughlin N, Brasier MD, Wacey D, Green OR, Perry R (2007) On biogenecity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7:10–26PubMedCrossRefGoogle Scholar
  91. Meierhenrich U, Munoz Caro G, Bredehöft JH, Jessberger LK, Thiemann W (2004) Identification of diamino acids in the Murchison meteorite. Proc Natl Acad Sci U S A 101:9182–9186PubMedCrossRefGoogle Scholar
  92. Miescher F (1871) Über die chemische Zusammensetzung der Eiterzellen. Hoppe-Seylers Medizinische-Chemischen Untersuchungen 4:441–460Google Scholar
  93. Millar TJ (2004) Organic molecules in the interstellar medium. In: Ehrenfreund P et al (eds) Astrobiology: future perspectives. Kluwer Academic, The Netherlands, pp 17–31Google Scholar
  94. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529PubMedCrossRefGoogle Scholar
  95. Miller SL (1955) Production of some organic compounds under possible primitive earth conditions. J Am Chem Soc 77:2351–2361CrossRefGoogle Scholar
  96. Miller SL, Lazcano A (1995) The origin of life—did it occur at high temperature? J Mol Evol 41:689–692PubMedCrossRefGoogle Scholar
  97. Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 130:245–251PubMedCrossRefGoogle Scholar
  98. Mills DR, Petersen RL, Spiegelman S (1967) An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc Natl Acad Sci U S A 59:217–224CrossRefGoogle Scholar
  99. Miyakawa S, Yamanashi H, Kobayashi K, Cleaves HJ, Miller SL (2002) Prebiotic synthesis from CO atmospheres: iImplications for the origin of life. Proc Natl Acad Sci U S A 99:14628–14631PubMedCrossRefGoogle Scholar
  100. Monnard PA, Oberholzer T, Luisi PL (1997) Entrapment of nucleic acids in liposomes. Biochim Biophys Acta 1329:39–50PubMedCrossRefGoogle Scholar
  101. Monod J (1970) Le hasard et la nécessité. Editions du Seuil, Paris; Zufall und Notwendigkeit (1971) Piper-Verlag München; Chance and necessity (1971) Knopf, New YorkGoogle Scholar
  102. Munoz Caro GM, Meierhenrich U, Schutte WA, Barbier B, Arcones Segovia A, Rosenbauer H, Thiemann W, Brack A, Greenberg JM (2002) Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416:403–406PubMedCrossRefGoogle Scholar
  103. Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci U S A 93:10268–10273PubMedCrossRefGoogle Scholar
  104. Nelson KE, Levy M, Miller SL (2000) Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc Natl Acad Sci U S A 97:3868–3871PubMedCrossRefGoogle Scholar
  105. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930PubMedCrossRefGoogle Scholar
  106. Nomura M, Erdmann V (1970) Reconstitution of ribosomal subunits from dissociated molecular components. Nature 228:744–748PubMedCrossRefGoogle Scholar
  107. Oberbeck V, Fogleman G (1989) Impacts and the origin of life. Nature 339:434PubMedCrossRefGoogle Scholar
  108. Okihana H, Egami F (1979) Polymers produced by heating an amino acid mixture in sea water enriched with transition elements. Orig Life 9:171–180PubMedCrossRefGoogle Scholar
  109. Oparin AI (1924) Proiskhozdenie zhizny (Origin of Life). Izd. Moskovski Rabochii, MoscowGoogle Scholar
  110. Oparin AI (1936) Origin of life (Moscow, in Russian); (1938, Macmillan, New York, in English)Google Scholar
  111. Oparin AI (1957) Die Entstehung des Lebens auf der Erde. VEB Verlag der Wissenschaften, BerlinGoogle Scholar
  112. Orgel LE, Crick HC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607PubMedCrossRefGoogle Scholar
  113. Otting G, Billeter M, Wüthrich K, Roth HJ, Leumann C, Eschenmoser A (1993) Warum pentose- und nicht hexose-Nucleinsäuren? Teil IV. Helv Chim Acta 76:2701–2755CrossRefGoogle Scholar
  114. Paecht-Horowitz M (1976) Clays as possible catalysts for peptide formation in the prebiotic era. Orig Life 7:369–381PubMedCrossRefGoogle Scholar
  115. Paecht-Horowitz M, Eirich FR (1988) The polymerization of amino acid adenylates on sodium montmorillonite with preadsorbed polypeptides. Orig Life Evol Biosph 18:359–387PubMedCrossRefGoogle Scholar
  116. Pasek M (2008) Rethinking early Earth phosphorus geochemistry. Proc Natl Acad Sci U S A 105:853–858PubMedCrossRefGoogle Scholar
  117. Pasek M, Lauretta D (2008) Extraterrestrial flux of potentially prebiotic C, N, and P to the early earth. Orig Life Evol Biosph 38:5–21PubMedCrossRefGoogle Scholar
  118. Penzlin H (2009) The riddle of “life”, a biologist’s critical view. Naturwissenschaften 96:1–23PubMedCrossRefGoogle Scholar
  119. Pfeil E, Ruckert H (1961) Die Bildung von Zuckern aus Formaldehyd unter der Einwirkung von Laugen. Liebigs Ann Chem 641:121–131CrossRefGoogle Scholar
  120. Pflug HD, Jaeschke-Boyer H (1979) Combined structural and chemical analysis of 3,800-Myr-old microfossils. Nature 280:483–486CrossRefGoogle Scholar
  121. Piccirilli JA (1995) RNA seeks its maker. Nature 376:548–549PubMedCrossRefGoogle Scholar
  122. Pizzarello S, Weber AL (2004) Prebiotic amino acids as asymmetric catalysts. Science 303:1151PubMedCrossRefGoogle Scholar
  123. Plankensteiner K, Reiner H, Rode BM (2006) Amino acids on the rampant primordial earth: electric discharges and the hot salty ocean. Mol Divers 10:3–7PubMedCrossRefGoogle Scholar
  124. Porco CC, Baker E, Barbara J, Beurle K, Brahic A, Burns JA, Charnoz S, Cooper N, Dawson DD, Del Genio AD, Denk T, Dones L, Dyunida U, Evans MW, Fussner S, Giese B, Grazier K, Helfenstein P, Ingersoll AP, Jacobson RA, Johnson TV, McEwen A, Murray CD, Neukum G, Owen WM, Perry J, Roatsch T, Spitale J, Squyres S, Thomas P, Tiscareno M, Turtle E, Vasavada AR, Veverka J, Wagner R, West R (2005) Imaging of Titan from the Cassini spacecraft. Nature 434:159–168Google Scholar
  125. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242PubMedCrossRefGoogle Scholar
  126. Rajamani S, Vlassov A, Benner S, Coombs A, Olasagasti F, Deamer D (2008) Lipid-assisted synthesis of RNA-like polymers from mononucleotides. Orig Life Evol Biosph 38:57–74PubMedCrossRefGoogle Scholar
  127. Reiner H, Plankensteiner K, Fitz D, Rode BM (2006) The possible influence of L-histidine on the origin of the first peptides on the primordial earth. Chem Biodivers 3:611–621PubMedCrossRefGoogle Scholar
  128. Ricardo A, Carrigan MA, Olcott AN, Benner SA (2004) Borate minerals stabilize ribose. Science 303:196PubMedCrossRefGoogle Scholar
  129. Robertson MP, Miller SL (1995) An efficient prebiotic synthesis of cytosine and uracil. Nature 375:772–774PubMedCrossRefGoogle Scholar
  130. Rossmann MG, Moras D, Olsen KW (1974) Chemical and biological evolution of a nucleotide-binding protein. Nature 250:194–199PubMedCrossRefGoogle Scholar
  131. Rode BM (1999) Peptides and the origin of life. Peptides 20:773–786PubMedCrossRefGoogle Scholar
  132. Rode BM, Schwendinger MG (1990) Copper-catalyzed amino acid condensation in water—a simple way of prebiotic peptide formation. Orig Life Evol Biosph 20:401–410CrossRefGoogle Scholar
  133. Rohlfing DL (1976) Thermal polyamino acid synthesis at less than 100°C. Science 193:68–70PubMedCrossRefGoogle Scholar
  134. Russell MJ, Daniel RM, Hall AJ, Sherringham JA (1994) A hydrothermically precipitated iron sulphide membrane as a first step towards life. J Mol Evol 39:231–243CrossRefGoogle Scholar
  135. Sagan C, Chyba C (1997) The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276:1217–1221PubMedCrossRefGoogle Scholar
  136. Schidlowski M (1988) A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–318CrossRefGoogle Scholar
  137. Schoning K, Scholz P, Guntha S, Wu X, Krishnamurthy R, Eschenmoser A (2000) Chemical etiology of nucleic acid structure: the α-threofuranosyl-(3′–2′)oligonucleotide system. Science 290:1347–1351PubMedCrossRefGoogle Scholar
  138. Schopf JW (1993) Microfossils of the early Archaen apex chert: new evidence of the antiquity of life. Science 260:640–646PubMedCrossRefGoogle Scholar
  139. Schopf JW (1999) Cradle of life. Earth’s earliest fossils. Princeton University Press, PrincetonGoogle Scholar
  140. Schrauzer GN, Strampach N, Hui LN, Palmer MR, Salehi J (1983) Nitrogen photoreduction on desert sands under sterile conditions. Proc Natl Acad Sci U S A 80:3873–3876PubMedCrossRefGoogle Scholar
  141. Schwendinger MG, Rode BM (1992) Investigations on the mechanism of salt-induced peptide formation. Orig Life Evol Biosph 22:349–359PubMedCrossRefGoogle Scholar
  142. Seel F, Schinnerling F (1978) Die Cyanat-induzierte Umwandlung von Calciumhydrogen-phosphat in Calciumdiphosphat—eine präbiotische Schlüsselreaktion? Z Naturforsch 33b:373–376Google Scholar
  143. Seel F, Klos KP, Schuh J (1985) Hydrothermale Kondensation von Magnesiumhydrogen-phosphaten zu Magnesiumdiphosphaten. Naturwissenschaften 72:658CrossRefGoogle Scholar
  144. Sleep NH, Zahnle KJ, Kasting JF, Morowitz HJ (1989) Annihilation of ecosystems by asteroid impacts on the early Earth. Nature 342:139–142PubMedCrossRefGoogle Scholar
  145. Spaargaren DH (1985) Origin of life: oceanic genesis, panspermia, or Darwin’s warm little pond? Experientia 41:719–727CrossRefGoogle Scholar
  146. Strobel SA, Doudna JA (1997) RNA seeing double: close-packing of helices in RNA tertiary structure. Trends Biochem Sci 22:262–265PubMedCrossRefGoogle Scholar
  147. Stubbe JA, Ge J, Yee CS (2001) The evolution of ribonucleotide reduction revisited. Trends Biochem Sci 26:93–99PubMedCrossRefGoogle Scholar
  148. Thiemann W (ed) (1981) Generation and amplification of chirality in chemical systems. Origins of life, vol 11. Reidel, DordrechtGoogle Scholar
  149. Tian F, Toon OB, Pavlov AA, de Sterck H (2005) A hydrogen-rich early earth atmosphere. Science 308:1014–1017PubMedCrossRefGoogle Scholar
  150. Tranter GE (1985) Parity-violating differences of chiral minerals and the origin of biomoleculae homochirality. Nature 318:172–173 (1986) Paritätsverletzung: Ursache der biomolekularen Chiralität. Nachr Chem Tech Lab 34:867–870CrossRefGoogle Scholar
  151. Tranter GE (1986) Preferential stabilization of the d-sugar series by the parity-violating weak interactions. J Chem Soc Chem Comm 1986:60–61CrossRefGoogle Scholar
  152. Unrau PJ, Bartel DP (1998) RNA-catalyzed nucleotide synthesis. Nature 395:260–263PubMedCrossRefGoogle Scholar
  153. Urey HC (1952) On the early chemical history of the earth and the origin of life. Proc Natl Acad Sci U S A 38:351–363PubMedCrossRefGoogle Scholar
  154. Usher DA (1977) Early chemical evolution of nucleic acids. Science 196:311–313PubMedCrossRefGoogle Scholar
  155. Voet AB, Schwartz AW (1983) Prebiotic adenine synthesis from HCN. Evidence for a newly discovered major pathway. Bioorg Chem 12:8–17CrossRefGoogle Scholar
  156. Wächtershäuser G (1988) Pyrite formation, the first energy source for life: a hypothesis. Syst Appl Microbiol 10:207–210Google Scholar
  157. Wächtershäuser G (2000) Life as we don’t know it. Science 289:1307–1308PubMedCrossRefGoogle Scholar
  158. Waldrop MM (1989) Did life really start out in an RNA world? Science 246:1248–1249PubMedCrossRefGoogle Scholar
  159. Walsh C (2001) Enabling the chemistry of life. Nature 409:226–231PubMedCrossRefGoogle Scholar
  160. Weber AL (1992) Prebiotic sugar synthesis: hexose and hydroxy acid synthesis from glyceraldehyde catalyzed by iron(III) hydroxide oxide. J Mol Evol 35:1–6PubMedCrossRefGoogle Scholar
  161. Weber AL, Miller SL (1981) Reasons for the occurrence of the twenty coded protein amino acids. J Mol Evol 17:273–284PubMedCrossRefGoogle Scholar
  162. Weber P, Greenberg JM (1985) Can spores survive in interstellar space? Nature 316:403–407CrossRefGoogle Scholar
  163. Whitfield J (2004) Born in a watery commune. Nature 427:674–676PubMedCrossRefGoogle Scholar
  164. Woese CR (1998) The universal ancestor. Proc Natl Acad Sci U S A 95:6854–6859PubMedCrossRefGoogle Scholar
  165. Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci U S A 97:8392–8396PubMedCrossRefGoogle Scholar
  166. Wong JT (1975) A co-evolution theory of the genetic code. Proc Natl Acad Sci U S A 72:1909–1912PubMedCrossRefGoogle Scholar
  167. Wiechert UH (2002) Earth’s early atmosphere. Science 298:2341–2342PubMedCrossRefGoogle Scholar
  168. Yamagata Y, Watanabe H, Saito M, Namba T (1991) Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352:516–519PubMedCrossRefGoogle Scholar
  169. Zhang L, Peritz A, Meggers E (2005) A simple glycol nucleic acid. J Am Chem Soc 127:4174–4175PubMedCrossRefGoogle Scholar
  170. Zuckerman B (1977) Interstellar molecules. Nature 268:491–495CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute of BiologyUniversity of KasselKasselGermany
  2. 2.LondonUK

Personalised recommendations