Naturwissenschaften

, Volume 96, Issue 10, pp 1157–1168

Deviance partitioning of host factors affecting parasitization in the European brown hare (Lepus europaeus)

  • Vanesa Alzaga
  • Paolo Tizzani
  • Pelayo Acevedo
  • Francisco Ruiz-Fons
  • Joaquín Vicente
  • Christian Gortázar
ORIGINAL PAPER

Abstract

Deviance partitioning can provide new insights into the ecology of host-parasite interactions. We studied the host-related factors influencing parasite prevalence, abundance, and species richness in European brown hares (Lepus europaeus) from northern Spain. We defined three groups of explanatory variables: host environment, host population, and individual factors. We hypothesised that parasite infection rates and species richness were determined by different host-related factors depending on the nature of the parasite (endo- or ectoparasite, direct or indirect life cycle). To assess the relative importance of these components, we used deviance partitioning, an innovative approach. The explained deviance (ED) was higher for parasite abundance models, followed by those of prevalence and then by species richness, suggesting that parasite abundance models may best describe the host factors influencing parasitization. Models for parasites with a direct life cycle yielded higher ED values than those for indirect life cycle ones. As a general trend, host individual factors explained the largest proportion of the ED, followed by host environmental factors and, finally, the interaction between host environmental and individual factors. Similar hierarchies were found for parasite prevalence, abundance, and species richness. Individual factors comprised the most relevant group of explanatory variables for both types of parasites. However, host environmental factors were also relevant in models for indirect life-cycle parasites. These findings are consistent with the idea of the host as the main habitat of the parasite; whereas, for indirect life-cycle parasites, transmission would be also modulated by environmental conditions. We suggest that parasitization can be used not only as an indicator of individual fitness but also as an indicator of environmental quality for the host. This research underlines the importance of monitoring parasite rates together with environmental, population, and host factors.

Keywords

Deviance partitioning Host factors Environment Lepus europaeus Parasite 

References

  1. Acevedo P, Vicente J, Alzaga V, Gortázar C (2005) Relationship between bronchopulmonary nematode larvae and relative abundances of Spanish ibex (Capra pyrenaica hispanica) from Castilla-La Mancha, Spain. J Helminthol 79:113–118PubMedCrossRefGoogle Scholar
  2. Acevedo P, Vicente J, Höfle U, Cassinello J, Ruiz-Fons F, Gortázar C (2007a) Estimation of European wild boar relative abundance and aggregation: a novel method in epidemiological risk assessment. Epidemiol Infect 135:519–527CrossRefGoogle Scholar
  3. Acevedo P, Cassinello J, Hortal J, Gortázar C (2007b) Invasive exotic aoudad (Ammotragus lervia) as a major threat to native Iberian ibex (Capra pyrenaica): a habitat suitability model approach. Divers Distrib 13:587–597CrossRefGoogle Scholar
  4. Alzaga V, Vicente J, Villanúa D, Acevedo P, Casas F, Gortázar C (2008) Body condition and parasite intensity correlates with escape capacity in Iberian hares (Lepus granatensis). Behav Ecol Sociobiol 62:769–775CrossRefGoogle Scholar
  5. Anderson RC (2000) Nematode parasites of vertebrates. Their development and transmission. CABI Publishing, New YorkGoogle Scholar
  6. Anderson RM, May RM (1978) Regulation and stability of host-parasite population interactions. I. Regulatory processes. J Anim Ecol 47:219–247CrossRefGoogle Scholar
  7. Arneberg P (2002) Host population density and body mass as determinants of species richness in parasite communities: comparative analyses of directly transmitted nematodes in mammals. Ecography 25:88–94CrossRefGoogle Scholar
  8. Ash LR, Orihel TC (1991) Parasites: a guide to laboratory procedures and identification. American Society of Clinical Pathology, ChicagoGoogle Scholar
  9. Austin MP, Nicholls AO, Margules CR (1990) Measurement of the realized qualitative niche: environmental niche of five Eucalyptus species. Ecol Monogr 60:161–177CrossRefGoogle Scholar
  10. Barbosa AM, Segivia JM, Vargas JM, Torres J, Real R, Miquel J (2005) Predictors of red fox (Vulpes vulpes) helminth parasite diversity in the provinces of Spain. Wildlife Biology in Practice 1:3–14CrossRefGoogle Scholar
  11. Barnes RFW, Tapper SC (1985) A method for counting hares by spotlight. J Zool 206:273–276Google Scholar
  12. Bordes F, Blumstein DT, Morand S (2007) Rodent sociality and parasite diversity. Biol Lett 3:692–694PubMedCrossRefGoogle Scholar
  13. Bordes F, Morand S, Kelt DA, vanVuren DH (2009) Home range and parasite diversity in mammals. Am Nat 173:1–9CrossRefGoogle Scholar
  14. Brown CR, Brown MB (2004) Empirical measurement of parasite transmission between groups in a colonial bird. Ecology 85:1619–1626CrossRefGoogle Scholar
  15. Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83(4):575–583PubMedCrossRefGoogle Scholar
  16. Carbonell R, Pérez-Tris J, Tellería JL (2003) Effects of habitat heterogeneity and local adaptation on the body condition of a forest passerine at the edge of its distributional range. Biol J Linn Soc 78(4):479–488CrossRefGoogle Scholar
  17. Caron A, Cross PC, Du Toit JT (2003) Ecological implications of bovine tuberculosis in African buffalo herds. Ecol Appl 13:1338–1345CrossRefGoogle Scholar
  18. Carrete M, Grande JM, Tella JL, Sanchez-Zapata JA, Donazara JA, Diaz-Delgado R, Romo A (2007) Habitat, human pressure, and social behaviour: partialling out factors affecting large-scale territory extinction in an endangered vulture. Biol Conserv 136(1):143–154CrossRefGoogle Scholar
  19. Cattadori IM, Haydon DT, Hudson PJ (2005a) Parasites and climate synchronize red grouse populations. Nature 433:737–741PubMedCrossRefGoogle Scholar
  20. Cattadori IM, Boag B, Bjørnstad ON, Cornell SJ, Hudson PJ (2005b) Peak shift and epidemiology in a seasonal host-nematode system. Proc R Soc Lond B 272:1163–1169CrossRefGoogle Scholar
  21. Clark Laboratories (2004) Idrisi Kilimanjaro version 14.02. GIS software package. Clark University, Worcester, UKGoogle Scholar
  22. Clemons C, Rickard LG, Keirans JE, Botzler RG (2000) Evaluation of host preferences by helminths and ectoparasites among black-tailed jackrabbits in northern California. J Wildl Dis 36:555–558PubMedGoogle Scholar
  23. Corbin E, Vicente J, Martin-Hernando MP, Acevedo P, Pérez-Rodriguez L, Gortázar C (2008) Spleen mass as a measure of immune strength in mammals. Mamm Rev 38:108–115CrossRefGoogle Scholar
  24. Cote SD, Stien A, Irvine RJ, Dallas JF, Marshall F, Halvorsen O, Langvatn R, Albon SD (2005) Resistance to abomasal nematodes and individual genetic variability in reindeer. Mol Ecol 14:4159–4168PubMedCrossRefGoogle Scholar
  25. Franklin AB, Anderson DR, Gutierrez RJ, Burnham KP (2000) Climate, habitat quality and fitness in northern Spotted owl populations in northwestern California. Ecol Monogr 70(4):539–590Google Scholar
  26. Gaston KJ, Lawton JH (1988) Patterns in the distribution and abundance of insect populations. Nature 331:709–712CrossRefGoogle Scholar
  27. Georgi JR, Georgi ME (1990) Parasitology for veterinarian, 5th edn. W.B. Saunders Company, Philadelphia, PensilvaniaGoogle Scholar
  28. Gil Collado J, Guillén Llera JL, Zapatero Ramos LM (1979) Claves para la identificación de los Ixodoidea españoles (adultos). Rev Iber Parasitol 39:107–118Google Scholar
  29. Gillespie TR, Chapman CA (2006) Prediction of parasite infection dynamics in primate metapopulations based on attributes of forest fragmentation. Conserv Biol 20:441–448PubMedCrossRefGoogle Scholar
  30. Gortázar C, Millán J, Acevedo P, Escudero MA, Marco J, Fernández de Luco D (2007) A large-scale survey of brown hare Lepus europaeus and Iberian hare L. granatensis populations at the limit of their ranges. Wildlife Biol 13:244–250CrossRefGoogle Scholar
  31. Gregory RD (1997) Comparative studies of host-parasite communities. In: Clayton DH, Moore J (eds) Host-parasite evolution. General principles and avian models. Oxford University Press, New York, pp 198–211Google Scholar
  32. Grenfell BT, Dobson AP (1995) Ecology of infectious diseases in natural populations. Cambridge University Press, CambridgeGoogle Scholar
  33. Guègan JF, Morand S, Poulin R (2005) Are there general lwas in parasite community ecology? The emergence of spatial parasitology and epidemiology. In: Thomas F, Renaud F, Guègan JF (eds) Parasitism and ecosystems. Oxford University Press, New York, pp 22–42CrossRefGoogle Scholar
  34. Hatcher MJ, Dick JTA, Dunn AM (2006) How parasites affect interactions between competitors and predators. Ecol Lett 9:1253–1271PubMedCrossRefGoogle Scholar
  35. Heikkinen R, Luoto M, Kuussaari M, Poyry J (2005) New insights into butterfly-environment relationships using partitioning methods. Proc R Soc Lond B 272:2203–2210CrossRefGoogle Scholar
  36. Hirzel A, Helfer V, Métral F (2001) Assessing habitat-suitability models with a virtual species. Ecol Model 145:111–121CrossRefGoogle Scholar
  37. Hirzel AH, Hausser J, Perrin N (2002a) Biomapper 3.1. Lausanne, Lab. For Conservation Biology. URL: http://www.unil.ch/biomapper
  38. Hirzel AH, Hausser J, Chessel D, Perrin N (2002b) Ecological niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83:2027–2036Google Scholar
  39. Hogue C, Swig B (2007) Habitat quality and endoparasitism in the Pacific sanddab Citharichthys sordidus from Santa Monica Bay, southern California. J Fish Biol 70:231–242CrossRefGoogle Scholar
  40. Hudson PJ, Dobson AP (1995) Macroparasites: observed patterns in naturally fluctuating animal populations. In: Grenfell BT, Dobson AP (eds) Ecology of infectious diseases in natural populations. Cambridge University Press, Cambridge, pp 144–177Google Scholar
  41. Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP (2002) The ecology of wildlife diseases. Oxford University Press, New YorkGoogle Scholar
  42. Hutchings MR, Gordon IJ, Kyriazakis I (2002) Grazing in heterogeneous environments: infra- and supraparasite distributions determine herbivore grazing decisions. Oecologia 132:453–460CrossRefGoogle Scholar
  43. Khalil LF, Jones A, Bray RA (1994) Keys to the cestode parasites of vertebrates. CAB International, WallingfordGoogle Scholar
  44. Krebs CJ, Singleton GR (1993) Indexes of condition for small mammals. Aust J Zool 41:317–323CrossRefGoogle Scholar
  45. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673CrossRefGoogle Scholar
  46. Legendre P, Legendre L (1998) Numerical ecology, 3rd edn. Elsevier publishers, Amsterdam, HollandGoogle Scholar
  47. Matson KD (2006) Are there differences in immune function between continental and insular birds? Proc R Soc Lond B 273:2267–2274CrossRefGoogle Scholar
  48. Molina X, Casanova JC, Feliu C (1999) Influence of host weight, sex and reproductive status on helminth parasites of the wild rabbit, Oryctolagus cuniculus, in Navarra, Spain. J Helminthol 73:221–225PubMedGoogle Scholar
  49. Möller AP, Christe P, Erritzöe J, Mavarez J (1998) Condition, disease and immune defense. Oikos 83:301–306CrossRefGoogle Scholar
  50. Morand S, Poulin R (1998) Density, body mass and parasite species richness of terrestrial mammals. Evol Ecol 12:717–727CrossRefGoogle Scholar
  51. Morand S, Poulin R (2000) Nematode parasite species richness and the evolution of spleen size in birds. Can J Zool 78:1356–1360CrossRefGoogle Scholar
  52. Moreno JM, Pineda FD, Rivas-Martínez S (1990) Climate and vegetation at the Eurosiberian-Mediterranean boundary in the Iberian Peninsula. J Veg Sci 1(2):233–244CrossRefGoogle Scholar
  53. Murray DL, Keith LB, Cary JR (1998) Do parasitism and nutritional status interact to affect production in snowshoe hares? Ecology 79:1209–1222CrossRefGoogle Scholar
  54. Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, Bellaterra. ISBN 932860-8-7Google Scholar
  55. Nunn C, Altizer S, Jones KE, Sechrest W (2003) Comparative tests of parasite species richness in primates. Am Nat 162:597–614PubMedCrossRefGoogle Scholar
  56. O’Connor LJ, Walkden-Brown SW, Kahn LP (2006) Ecology of the free-living stages of major trichostrongylid parasites of sheep. Vet Parasitol 142:1–15PubMedCrossRefGoogle Scholar
  57. Palomo LJ, Gisbert J (2002) Atlas de los Mamíferos Terrestres de España. Dirección General de Conservación de la Naturaleza-SECEM-SECEMU, MadridGoogle Scholar
  58. Patterson B, Dick C, Dittmar K (2008) Parasitism by bat flies (Diptera: Streblidae) on neotropical bats: effects of host body size, distribution, and abundance. Parasitol Res 103(5):1091–1100PubMedCrossRefGoogle Scholar
  59. Pellerdy L (1974) Coccidia and coccidiosis, 2nd edn. Verlag Paul Parey, BerlinGoogle Scholar
  60. Pérez JM, Meneguz PG, Dematteis A, Rossi L, Serrano E (2006) Parasites and conservation biology: the ‘ibex-ecosystem’. Biodivers Conserv 15:2033–2047CrossRefGoogle Scholar
  61. Peroux R (1995) La lièvre d´Europe. Bull Mens Off Natl Chasse 204:1–96Google Scholar
  62. Poiani A (1992) Ectoparasitism as a posssible cost of social life: a comparative analysis using Australian passerines (Passeriformes). Oecologia 92:429–441CrossRefGoogle Scholar
  63. Poulin R (2004) Macroecological patterns of species richness in parasite assemblages. Basic Appl Ecol 5:423–434CrossRefGoogle Scholar
  64. Poulin R (2007) Are there general laws in parasite ecology? Parasitology 134(6):763–776PubMedCrossRefGoogle Scholar
  65. Real R, Barbosa AM, Porras D, Kin MS, Marquez AL, Guerreo JC, Palomo J, Justo ER, Vargas JM (2003) Relative importance of environment, human activity and spatial situation in determining the distribution of terrestrial mammal diversity in Argentina. J Biogeogr 30:939–947CrossRefGoogle Scholar
  66. Rohani P, Earn JD, Grenfell BT (1999) Opposite patterns of synchrony in sympatric disease metapopultions. Science 286:968–971PubMedCrossRefGoogle Scholar
  67. Sacks BN, Woodward DL, Colwell AE (2003) A long-term study of non-native-heartworm transmission among coyotes in a Mediterranean ecosystem. Oikos 102:478–490CrossRefGoogle Scholar
  68. Skryabin KI (1991) Key to parasitic nematodes. E.J Brill Publishing Company, Leiden (The Netherlands)Google Scholar
  69. Stroh G (1931) Zwei sichere Altersmerkmale beim Hasen. Berl TieraÉrztl Wochenschr 47:180–181Google Scholar
  70. Telfer S, Birtles R, Bennett M, Lambin X, Paterson S, Begon M (2008) Parasite interactions in natural populations: insights from longitudinal data. Parasitology 135(7):767–781PubMedCrossRefGoogle Scholar
  71. Thieltges DW, Reise K (2007) Spatial heterogeneity in parasite infections at different spatial scales in an intertidal bivalve. Oecologia 150:569–581PubMedCrossRefGoogle Scholar
  72. Thomas F, Guegan J, Michalakis Y, Renaud F (2000) Parasites and host life-history traits: implications for community ecology and species co-existence. Int J Parasitol 30:669–674PubMedCrossRefGoogle Scholar
  73. Thomas F, Renaud F, Guégan JF (2004) Parasitism and ecosystems. Oxford University Press, New YorkGoogle Scholar
  74. Tinsley RC (2005) Parasitism and hostile environments. In: Thomas F, Renaud F, Guegan F (eds) Parasitism and ecosystems. Oxford University Press, Oxford, UK, pp 85–111CrossRefGoogle Scholar
  75. Tompkins DM, Dobson AP, Arneberg P, Begon ME, Cattadori IM, Greenman JV, Heesterbeek H, Hudson PJ, Newborn B, Pugliese A, Rizzoli AP, Rosa R, Rosso F, Wilson K (2001) Parasites and host population dynamics. In: Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP (eds) The ecology of wildlife diseases. Oxford University Press, New York, pp 45–62Google Scholar
  76. van Oort H, Otter KA (2005) Natal nutrition and the habitat distributions of male and female black-capped chickadees. Can J Zool 83:1495–1501CrossRefGoogle Scholar
  77. Vicente J, Fierro Y, Martínez M, Gortázar C (2004) Long-term epidemiology, effect on body condition and interspecific interactions of concomitant infection by nasopharyngeal bot fly larvae (Cephenemyia auribarbis and Pharyngomyia picta, Oestridae) in a population of Iberian red deer (Cervus elaphus hispanicus). Parasitology 129:349–361PubMedCrossRefGoogle Scholar
  78. Vicente J, Höfle U, Fernández-de-Mera IG, Gortázar C (2007a) The importance of parasite life history and host density in predicting the impact of infections in red deer. Oecologia 152:655–664CrossRefGoogle Scholar
  79. Vicente J, Pérez-Rodríguez L, Gortázar C (2007b) Sex, age, spleen size, and kidney fat of red deer relative to infection intensities of the lungworm Elaphostrongylus cervi. Naturwissenschaften 94:581–587CrossRefGoogle Scholar
  80. Villanúa D, Acevedo P, Höfle U, Rodríguez O, Gortázar C (2006) Changes in parasite transmission stage excretion after pheasant release. J Helminthol 80:1–7CrossRefGoogle Scholar
  81. Wilson K, Grenfell BT (1997) Generalized linear modeling for parasitologists. Parasitol Today 13:33–38PubMedCrossRefGoogle Scholar
  82. Wilson K, Björnstad ON, Dobson AP, Merler S, Poglayen G, Randolph SE, Read AF, Skorping A (2002) Heterogeneities in macroparasite infections:patterns and processes. In: Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP (eds) The ecology of wildlife diseases. Oxford University Press, New York, pp 6–44Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Vanesa Alzaga
    • 1
    • 5
  • Paolo Tizzani
    • 2
  • Pelayo Acevedo
    • 3
  • Francisco Ruiz-Fons
    • 4
  • Joaquín Vicente
    • 1
  • Christian Gortázar
    • 1
  1. 1.Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM)Ciudad RealSpain
  2. 2.Cerigefas, Centro Ricerche sulla Gestione della Fauna SelvaticaUniversitá degli Studi di TorinoSampeyreItaly
  3. 3.Biogeography, Diversity, and Conservation Research Team, Department of Animal Biology, Faculty of SciencesUniversity of MalagaMálagaSpain
  4. 4.Department of Animal HealthNEIKER-TECNALIA, Instituto Vasco de Investigación y Desarrollo AgrarioDerioSpain
  5. 5.Gestión Ambiental, Viveros y Repoblaciones de NavarraPamplonaSpain

Personalised recommendations