Advertisement

Naturwissenschaften

, Volume 96, Issue 9, pp 1079–1089 | Cite as

High-field 1H T1 and T2 NMR relaxation time measurements of H2O in homeopathic preparations of quartz, sulfur, and copper sulfate

  • Stephan Baumgartner
  • Martin Wolf
  • Peter Skrabal
  • Felix Bangerter
  • Peter Heusser
  • André Thurneysen
  • Ursula Wolf
ORIGINAL PAPER

Abstract

Quantitative meta-analyses of randomized clinical trials investigating the specific therapeutic efficacy of homeopathic remedies yielded statistically significant differences compared to placebo. Since the remedies used contained mostly only very low concentrations of pharmacologically active compounds, these effects cannot be accounted for within the framework of current pharmacology. Theories to explain clinical effects of homeopathic remedies are partially based upon changes in diluent structure. To investigate the latter, we measured for the first time high-field (600/500 MHz) 1H T1 and T2 nuclear magnetic resonance relaxation times of H2O in homeopathic preparations with concurrent contamination control by inductively coupled plasma mass spectrometry (ICP-MS). Homeopathic preparations of quartz (10c–30c, n = 21, corresponding to iterative dilutions of 100−10–100−30), sulfur (13x–30x, n = 18, 10−13–10−30), and copper sulfate (11c–30c, n = 20, 100−11–100−30) were compared to n = 10 independent controls each (analogously agitated dilution medium) in randomized and blinded experiments. In none of the samples, the concentration of any element analyzed by ICP-MS exceeded 10 ppb. In the first measurement series (600 MHz), there was a significant increase in T1 for all samples as a function of time, and there were no significant differences between homeopathic potencies and controls. In the second measurement series (500 MHz) 1 year after preparation, we observed statistically significant increased T1 relaxation times for homeopathic sulfur preparations compared to controls. Fifteen out of 18 correlations between sample triplicates were higher for controls than for homeopathic preparations. No conclusive explanation for these phenomena can be given at present. Possible hypotheses involve differential leaching from the measurement vessel walls or a change in water molecule dynamics, i.e., in rotational correlation time and/or diffusion. Homeopathic preparations thus may exhibit specific physicochemical properties that need to be determined in detail in future investigations.

Keywords

Homeopathy NMR relaxation Homeopathic remedies Potentization 

Notes

Acknowledgments

We thank Tim Logan, Vincent Salters, Jack Skalicky, Hans J. Schneider-Muntau, Afi Sachi-Kocher, Ted Zateslo, and Jeroen Sonke for practical and theoretical help during the NMR and ICP-MS experiments. Critical and helpful comments from four anonymous reviewers are gratefully acknowledged. This work was supported by the Software Foundation, Darmstadt, Germany; Wala Heilmittel GmbH, Boll, Germany; and Dr. Reckeweg & Co. AG, Bensheim, Germany. The sponsors had no influence whatsoever upon design, realization, evaluation, and publication of the study. The experiments comply with the current laws of the countries in which they were performed (USA and Switzerland).

Supplementary material

114_2009_569_MOESM1_ESM.pdf (2 mb)
ESM (PDF 2003 kb)

References

  1. Aabel S, Fossheim S, Rise F (2001) Nuclear magnetic resonance (NMR) studies of homeopathic solutions. Br Homeopath J 90:14–20PubMedCrossRefGoogle Scholar
  2. Abragam A (1961) Principles of nuclear magnetism. Oxford University Press, OxfordGoogle Scholar
  3. Anick DJ (2004) High sensitivity 1H-NMR spectroscopy of homeopathic remedies made in water. BMC Complementary and Alternative Medicine 4:15PubMedCrossRefGoogle Scholar
  4. Anonymous (2004) Homöopathisches Arzneibuch 2004 (HAB). Deutscher Apotheker Verlag, StuttgartGoogle Scholar
  5. Atmanspacher H, Römer H, Walach H (2002) Weak quantum theory: complementarity and entanglement in physics and beyond. Found Phys 32:379–406CrossRefGoogle Scholar
  6. Barnes J, Resch KL, Ernst E (1997) Homeopathy for postoperative ileus? A meta-analysis. J Clin Gastroenterol 25:628–633PubMedCrossRefGoogle Scholar
  7. Bastide M, Lagache A (1997) A communication process: a new paradigm applied to high-dilution effects on the living body. Alternative Therapies in Health and Medicine 3:35–39PubMedGoogle Scholar
  8. Baumgartner S, Heusser P, Thurneysen A (1998) Methodological standards and problems in preclinical homoeopathic potency research. Forschende Komplementärmedizin 5:27–32PubMedGoogle Scholar
  9. Becker-Witt C, Weisshuhn TER, Lüdtke R, Willich SN (2003) Quality assessment of physical research in homeopathy. J Altern Complement Med 9:113–132PubMedCrossRefGoogle Scholar
  10. Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73:679–712CrossRefGoogle Scholar
  11. Cazin JC, Cazin M, Chaoui A, Belon P (1991) Influence of several physical factors on the activity of ultra low doses. In: Doutremepuich C (ed) Ultra low doses. Taylor & Francis, London, pp 69–80Google Scholar
  12. Demangeat JL, Demangeat C, Gries P, Poitevin B, Constantinesco A (1992) Modifications des temps de relaxation RMN à 4 MHz des protons du solvant dans les très hautes dilution salines de silice/lactose. Journal de médecine nucléaire et biophysique 16:135–145Google Scholar
  13. Demangeat JL, Gries P, Poitevin B, Droesbeke JJ, Zahaf T, Maton F, Piérart C, Muller RN (2004) Low-field NMR water proton longitudinal relaxation in ultrahighly diluted aqueous solutions of silica-lactose prepared in glass material for pharmaceutical use. Appl Magn Reson 26:465–481CrossRefGoogle Scholar
  14. Elia V, Niccoli M (2000) New physico-chemical properties of water induced by mechanical treatments. A calorimetric study at 25°C. J Therm Anal Calorim 61:527–537CrossRefGoogle Scholar
  15. Franks F (ed) (1972) Water—a comprehensive treatise. Plenum, New YorkGoogle Scholar
  16. Funk W, Dammann V, Vonderheid C, Oehlmann G (1985) Statistische Methoden in der Wasseranalytik. Weinheim, VCH VerlagsgesellschaftGoogle Scholar
  17. Funk W, Dammann V, Donnevert G (1992) Qualitätssicherung in der Analytischen Chemie. Weinheim, VCH VerlagsgesellschaftGoogle Scholar
  18. Hahnemann S (1921) Organon der Heilkunst (6. Auflage). HeidelbergGoogle Scholar
  19. Jacobs J, Jonas WB, Jimenez-Perez M, Crothers D (2003) Homeopathy for childhood diarrhea: combined results and metaanalysis from three randomized, controlled clinical trials. Pediatr Infect Dis J 22:229–234PubMedCrossRefGoogle Scholar
  20. Jonas WB, Linde K, Ramirez G (2000) Homeopathy and rheumatic disease. Rheum Dis Clin North Am 26:117–123PubMedCrossRefGoogle Scholar
  21. Kratky KW (2004) Homöopathie und Wasserstruktur: Ein physikalisches Modell. Forsch Komplentarmed Klass Naturheilkd 11:24–32CrossRefGoogle Scholar
  22. Lasne Y (1986) Propriétés des Solutions “Homéopathiques”—Mesure da la Relaxation Magnétique T2. Université Claude Bernard, LyonGoogle Scholar
  23. Lüdtke R, Wiesenauer M (1997) Eine Metaanalyse der homöopathischen Behandlung der Pollinosis mit Galphimia glauca. Wien Med Wochenschr 147:323–327PubMedGoogle Scholar
  24. Milgrom LR (2002) Patient-practitioner-remedy (PPR) entanglement. Part 1: a qualitative, non-local metaphor for homeopathy based on quantum theory. Br Homeopath J 91:239–248CrossRefGoogle Scholar
  25. Rey L (2003) Thermoluminescence of ultra-high dilutions of lithium chloride and sodium chloride. Physica A 323:67–74CrossRefGoogle Scholar
  26. Taylor MA, Reilly D, Llewellyn-Jones RH, McSharry C, Aitchison TC (2000) Randomised controlled trial of homoeopathy versus placebo in perennial allergic rhinitis with overview of four trial series. Br Med J 321:471–476CrossRefGoogle Scholar
  27. Vickers AJ, Smith C (2006) Homoeopathic Oscillococcinum for preventing and treating influenza and influenza-like syndromes. Cochrane Database Syst Rev 3: CD001957Google Scholar
  28. Weingärtner O (1990) NMR-Features That Relate To Homoeopathic Sulphur-Potencies. The Berlin Journal on Research in Homoeoepathy 1:61–68Google Scholar
  29. Weingärtner O (2003) What is the therapeutically active ingredient of homeopathic potencies? Homeopathy 92:145–151PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Stephan Baumgartner
    • 1
    • 2
    • 3
  • Martin Wolf
    • 1
    • 2
  • Peter Skrabal
    • 4
  • Felix Bangerter
    • 4
  • Peter Heusser
    • 1
  • André Thurneysen
    • 1
  • Ursula Wolf
    • 1
    • 2
  1. 1.Institute of Complementary Medicine KIKOMUniversity of BernBernSwitzerland
  2. 2.National High Magnetic Field Laboratory (NHMFL)Florida State UniversityTallahasseeUSA
  3. 3.Institute HisciaArlesheimSwitzerland
  4. 4.Department of Chemistry and Applied Biosciences (ICB)Swiss Federal Institute of Technology Zurich (ETHZ), ETH HönggerbergZurichSwitzerland

Personalised recommendations