Naturwissenschaften

, Volume 96, Issue 9, pp 1011–1025 | Cite as

Neurobiology of the homing pigeon—a review

Review

Abstract

Homing pigeons are well known as good homers, and the knowledge of principal parameters determining their homing behaviour and the neurological basis for this have been elucidated in the last decades. Several orientation mechanisms and parameters—sun compass, earth’s magnetic field, olfactory cues, visual cues—are known to be involved in homing behaviour, whereas there are still controversial discussions about their detailed function and their importance. This paper attempts to review and summarise the present knowledge about pigeon homing by describing the known orientation mechanisms and factors, including their pros and cons. Additionally, behavioural features like motivation, experience, and track preferences are discussed. All behaviour has its origin in the brain and the neuronal basis of homing and the neuroanatomical particularities of homing pigeons are a main topic of this review. Homing pigeons have larger brains in comparison to other non-homing pigeon breeds and particularly show increased size of the hippocampus. This underlines our hypothesis that there is a relationship between hippocampus size and spatial ability. The role of the hippocampus in homing and its plasticity in response to navigational experience are discussed in support of this hypothesis.

Keywords

Homing pigeon Navigation Brain Avian hippocampus Behaviour 

Notes

Acknowledgement

Thanks are due to Prof. Mike Mann (Omaha, Nebraska) for improving the style of the manuscript and for suggestions to improve the English.

References

  1. Able KP (1996) The debate over olfactory navigation by homing pigeons. J Exp Biol 199:121–124Google Scholar
  2. Alleva E, Baldaccini NE, Foa A, Visalberghi E (1975) Homing behaviour of the Rock pigeon. Monit Zool Ital (NS) 9:213–224Google Scholar
  3. Atoji Y, Wild JM, Yamamoto Y, Suzuki Y (2002) Intratelencephalic connections of the hippocampus in pigeons (Columba livia). J Comp Neurol 447:177–199PubMedCrossRefGoogle Scholar
  4. Baker RR (1984) Bird navigation: the solution of a mystery. Hodder and Stoughten, LondonGoogle Scholar
  5. Barton RA, Harvey P (2000) Mosaic evolution of brain structures in mammals. Nature 405:1055–1058PubMedCrossRefGoogle Scholar
  6. Beason RC, Semm P (1996) Does the ophthalmic nerve carry magnetic navigational information? J Exp Biol 199:1241–1244PubMedGoogle Scholar
  7. Beason RC, Dussourd N, Deutschlander ME (1995) Behavioural evidence for the use of magnetic material in magnetoreception by a migratory bird. J Exp Biol 198:141–146PubMedGoogle Scholar
  8. Begall S, Cerveny J, Neef J, Vojtech O, Burda H (2008) Magnetic alignment in grazing and resting cattle and deer. Proc Natl Acad Sci U S A 105:13451–13455PubMedCrossRefGoogle Scholar
  9. Benvenuti S, Fiaschi V (1983) Pigeon homing: combined effect of olfactory deprivation and visual impairment. Comp Biochem Physiol 76:719–723CrossRefGoogle Scholar
  10. Berndt R, Meise W (1962) Naturgeschichte der Vögel. Franckh’sche Verlagshandlung, StuttgartGoogle Scholar
  11. Bingmann VP (1993) Vision, cognition and the avian hippocampus. In: Zeigler HP, Bischof HJ (eds) Vision, brain and behaviour in birds. MIT Press, CambridgeGoogle Scholar
  12. Bingman VP, Mench JA (1990) Homing behavior of hippocampus and parahippocampus lesioned pigeons following short-distance releases. Behav Brain Res 40:227–238PubMedCrossRefGoogle Scholar
  13. Bingmann VP, Hough GE II, Kahn MC, Siegel JJ (2003) The homing pigeon hippocampus and space: in search of adaptive specialization. Brain Behav Evol 62:117–127CrossRefGoogle Scholar
  14. Bingman VP, Gagliardo A, Hough GE, Ioalè P, Kahn MC, Siegel JJ (2005) The avian hippocampus, homing in pigeons and the memory representation of large scale-space. Integr Comp Biol 45:555–564CrossRefGoogle Scholar
  15. Biro D, Guilford T, Dell’Omo G, Lipp HP (2002) How the viewing of familiar landscapes prior to release allows pigeons to home faster: evidence from GPS tracking. J Exp Biol 205:3833–3844PubMedGoogle Scholar
  16. Biro D, Meade J, Guilford T (2004) Familiar route loyalty implies visual pilotage in the homing pigeon. Proc Natl Acad Sci U S A 101(50):17440–17443PubMedCrossRefGoogle Scholar
  17. Biro D, Sumpter DJT, Meade J, Guilford T (2006) From compromise to leadership in pigeon homing. Curr Biol 16:2123–2128PubMedCrossRefGoogle Scholar
  18. Biro D, Freeman R, Meade J, Roberts S, Guilford T (2007) Pigeons combine compass and landmark guidance in familiar route navigation. Proc Natl Acad Sci U S A 104(18):7471–7476PubMedCrossRefGoogle Scholar
  19. Braithwaite VA, Guilford T (1991) Viewing familiar landscape affects pigeon homing. Proc R Soc Lond B 245:183–186CrossRefGoogle Scholar
  20. Burt T, Holland R, Guilford T (1997) Further evidence for visual landmark involvement in the pigeon’s familiar area map. Anim Behav 53:1203–1209PubMedCrossRefGoogle Scholar
  21. Casini G, Bingmann VP, Bagnoli P (1986) Connections of the pigeon dorsomedial forebrain studied with WGH-HRP and ³H-Proline. J Comp Neurol 245:454–470PubMedCrossRefGoogle Scholar
  22. Chappell JM, Guilford TC (1997) The oriental salience of visual cues to the homing pigeon. Anim Behav 53:287–296CrossRefGoogle Scholar
  23. Clayton NS (1995) Development of memory and the hippocampus: comparison of food-storing and nonstoring birds one a one-trial associative memory task. J Neurosci 15:2796–2807PubMedGoogle Scholar
  24. Clayton NS (1996) Development of food-storing and the hippocampus in juvenile marsh tits (Parus palustris). Behav Brain Res 74:153–159PubMedCrossRefGoogle Scholar
  25. Clayton NS, Krebs JR (1994) Hippocampal growth and attrition in birds affected by experience. Proc Natl Acad Sci U S A 91:7410–7414PubMedCrossRefGoogle Scholar
  26. Cnotka J, Möhle M, Rehkämper G (2008) Navigational experience affects hippocampal size in homing pigeons. Brain Behav Evol 72(3):179–250CrossRefGoogle Scholar
  27. Csernus VJ (2006) The avian pineal gland. Chronobiol Int 23:329–339PubMedCrossRefGoogle Scholar
  28. Davila AF, Winklhofer M, Shcherbakov VP, Petersen N (2005) Magnetic pulse affects a putative magnetoreceptor mechanism. Biophys J 89(1):56–63PubMedCrossRefGoogle Scholar
  29. Della Chiesa A, Pecchia T, Tommasi L, Vallortigara G (2006) Multiple landmarks, the encoding of environmental geometry and the spatial logics of a dual brain. Anim Cogn 9:281–293PubMedCrossRefGoogle Scholar
  30. Demaine C, Semm P (1985) The avian pineal gland as an independent magnetic sensor. Neurosci Lett 62:119–122PubMedCrossRefGoogle Scholar
  31. Dennis TE, Rayner MJ, Walker MM (2007) Evidence that pigeons orient to geomagnetic intensity during homing. Proc R Soc B 274:1153–1158PubMedCrossRefGoogle Scholar
  32. Deutschlander ME, Borland SC, Phillips JB (1999) Extraocular magnetic compass in newts. Nature 400:324–325PubMedCrossRefGoogle Scholar
  33. Ebinger P (1980) Zur Hirn-Körpergewichtsbeziehung bei Wölfen und Haushunden sowie Haushundrassen. Z Säugetierkde 45:148–153Google Scholar
  34. Ebinger P, Rehkämper G, Schröder H (1992) Forebrain specialization and the olfactory system in anseriform birds. An architectonical and tracing study. Cell Tissue Res 268:81–90PubMedCrossRefGoogle Scholar
  35. Fleissner G, Holtkamp-Rötzler E, Hanzlik M, Winklhofer M, Fleissner G, Petersen N, Wiltschko W (2003) Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol 458:350–360PubMedCrossRefGoogle Scholar
  36. Floody OR, Arnold AP (1997) Song lateralization in the zebra finch. Horm Behav 31:25–34PubMedCrossRefGoogle Scholar
  37. Füller E, Kowalski U, Wiltschko R (1983) Orientation of homing pigeons: compass orientation vs piloting by familiar landmarks. J Comp Physiol 153:55–58CrossRefGoogle Scholar
  38. Gagliardo A, Mazzotto M, Bingman VP (1997) Piriform cortex ablations block navigational map learning in homing pigeons. Behav Brain Res 86:143–148PubMedCrossRefGoogle Scholar
  39. Gagliardo A, Ioalè P, Bingman VP (1999) Homing in pigeons: the role of the hippocampal formation in the representation of landmarks used for navigation. J Neurosci 19:311–315PubMedGoogle Scholar
  40. Gagliardo A, Ioalè P, Odetti F, Bingman VP (2001a) The ontogeny of the homing pigeon navigational map: evidence for a sensitive learning period. Proc R Soc Lond B 268:197–202CrossRefGoogle Scholar
  41. Gagliardo A, Ioalè P, Odetti F, Bingman VP, Siegel JJ, Vallortigara G (2001b) Hippocampus and homing in pigeons: left and right hemispheric differences in navigational map learning. Eur J Neurosci 13:1617–1624PubMedCrossRefGoogle Scholar
  42. Gagliardo A, Odetti F, Ioalè P, Bingman VP, Tuttle S, Vallortigara G (2002) Bilateral participation of the hippocampus in familiar landmark navigation by homing pigeons. Behav Brain Res 136:201–209PubMedCrossRefGoogle Scholar
  43. Gagliardo A, Odetti F, Ioalè P, Pecchia T, Vallortigara G (2005a) Functional asymmetry of left and right avian piriform cortex in homing pigeons’ navigation. Eur J Neurosci 22:189–194PubMedCrossRefGoogle Scholar
  44. Gagliardo A, Vallortigara G, Nardi D, Bingman VP (2005b) A lateralized avian hippocampus: preferential role of the left hippocampal formation in homing pigeon sun compass-based learning. Eur J Neurosci 22:2549–2559PubMedCrossRefGoogle Scholar
  45. Gagliardo A, Ioalè P, Savini M, Wild JM (2006) Having the nerve to home: trigeminal magnetoreceptor versus olfactory mediation of homing in pigeons. J Exp Biol 209:2888–2892PubMedCrossRefGoogle Scholar
  46. Gagliardo A, Ioalè P, Savini M, Lipp HP, Dell’Omo G (2007a) Finding home: the final step of the pigeons’ homing process studied with a GPS data logger. J Exp Biol 210:1132–1138PubMedCrossRefGoogle Scholar
  47. Gagliardo A, Pecchia T, Savini M, Odetti F, Ioalè P, Vallortigara G (2007b) Olfactory lateralization in homing pigeons: initial orientation of birds receiving a unilateral olfactory input. Eur J Neurosci 25:1511–1516PubMedCrossRefGoogle Scholar
  48. Gagliardo A, Ioalè P, Savini M, Wild M (2008) Navigational abilities of homing pigeons deprived of olfactory or trigeminally mediated magnetic information when young. J Exp Biol 211:2046–2051PubMedCrossRefGoogle Scholar
  49. Geyr von Schweppenburg H (1922) Zur Theorie des Vogelzuges. J Orn 70:361–385CrossRefGoogle Scholar
  50. Gould JL (2006) Homing behaviour: decisions, dominance and democracy. Curr Biol 16(21):R920–R921PubMedCrossRefGoogle Scholar
  51. Griffin DR (1952) Bird navigation. Biol Rev Camb Phil Soc 27:359–400CrossRefGoogle Scholar
  52. Güntürkün O (1991) The functional organization of the avian visual system. In: Andrew RJ (ed) Neural and behavioural plasticity. Oxford University Press, OxfordGoogle Scholar
  53. Güntürkün O (1997) Morphological asymmetries of the tectum opticum in the pigeon. Exp Brain Res 116:561–566Google Scholar
  54. Haase E, Otto C, Murbach H (1977) Brain weight in homing and ‘non-homing’ pigeons. Experientia 33:606PubMedCrossRefGoogle Scholar
  55. Hanzlik M, Heunemann C, Holtkamp-Rötzler E, Winklhofer M, Petersen N, Fleissner G (2000) Superparamagnetic magnetite in the upper beak tissue of homing pigeons. BioMetals 13:325–331PubMedCrossRefGoogle Scholar
  56. Healy SD, Krebs JR (1992) Food-storing and the hippocampus in corvids: amount and volume are correlated. Proc R Soc Lond B 248:241–245CrossRefGoogle Scholar
  57. Healy SD, Gwinner E, Krebs JR (1996) Hippocampal volume in migratory and non-migratory warblers: effects of age and experience. Behav Brain Res 81:61–68PubMedCrossRefGoogle Scholar
  58. Hemmer H (1990) Domestication: the decline of environmental appreciation. Cambridge University Press, CambridgeGoogle Scholar
  59. Hodos W, Erichsen JT (1990) Lower-field myopia in birds—an adaptation that keeps the ground in focus. Vision Res 30:653–657PubMedCrossRefGoogle Scholar
  60. Holland RA (2003) The role of visual landmarks in the avian familiar area map. J Exp Biol 206:1773–1778PubMedCrossRefGoogle Scholar
  61. Holland RA, Thorup K, Vonhof MJ, Cochran WW, Wikelski M (2006) Bat orientation using earth’s magnetic field. Nature 444:702PubMedCrossRefGoogle Scholar
  62. Hough GE, Bingman VP (2008) Rotation of visual landmark cues influences the spatial response profile of hippocampal neurons in freely-moving homing pigeons. Behav Brain Res 187:473–477PubMedCrossRefGoogle Scholar
  63. Hough GE II, Pang KCH, Bingman VP (2002) Intrahippocampal connections in the pigeon (Columba livia) as revealed by stimulation evoked field potentials. J Comp Neurol 452:297–309PubMedCrossRefGoogle Scholar
  64. Howard KJ, Rogers LJ, Boura ALA (1980) Functional lateralization of the chicken forebrain revealed by use of intracranial glutamate. Brain Res 188:369–382PubMedCrossRefGoogle Scholar
  65. Ioalè P (2000) Pigeon orientation: effects of the application of magnets under overcast skies. Naturwissenschaften 87:232–235PubMedCrossRefGoogle Scholar
  66. Ioalè P, Benvenuti S (1983) Pigeon homing: further experiments on shielded lofts. Comp Biochem Physiol 76A(4):725–731CrossRefGoogle Scholar
  67. Ioalè P, Nozzolini M, Papi F (1990) Homing pigeons do extract directional information from olfactory stimuli. Behav Ecol Sociobiol 26:301–305CrossRefGoogle Scholar
  68. Ioalè P, Gagliardo A, Bingman VP (2000a) Further experiments on the relationship between hippocampus and orientation following phase-shift in homing pigeons. Behav Brain Res 108:157–167PubMedCrossRefGoogle Scholar
  69. Ioalè P, Gagliardo A, Bingman VP (2000b) Hippocampal participation in navigational map learning in young homing pigeons is dependent on training experience. Eur J Neurosci 12:742–750PubMedCrossRefGoogle Scholar
  70. Ioalè P, Savini M, Gagliardo A (2007) Pigeon homing: the navigational map developed in adulthood is based on olfactory information. Ethology 114:95–102Google Scholar
  71. Iwaniuk AN, Dean KM, Nelson JE (2004) A mosaic pattern characterizes the evolution of the avian brain. Proc R Soc Lond B 271:S148–S151CrossRefGoogle Scholar
  72. Jacobs LF (2003) The evolution of the cognitive map. Brain Behav Evol 62:128–139PubMedCrossRefGoogle Scholar
  73. Johnston RF, Janiga M (1995) Feral pigeons. Oxford University Press, OxfordGoogle Scholar
  74. Kahn MC, Bingman V (2004) Lateralization of spatial learning in the avian hippocampal formation. Behav Neurosci 118:333–344PubMedCrossRefGoogle Scholar
  75. Kahn MC, Hough GE II, Ten Eyck GR, Bingman VP (2003) Internal connectivity of the homing pigeon (Columba livia) hippocampal formation: an anterograde and retrograde tracer study. J Comp Neurol 459:127–141PubMedCrossRefGoogle Scholar
  76. Kamil AC, Cheng K (2001) Way-finding and landmarks: the multiple bearings hypothesis. J Exp Biol 204:103–113PubMedGoogle Scholar
  77. Karten HJ (1979) Visual lemniscal pathways in birds. In: Granda AM, Maxwell JM (eds) Neural mechanisms of behaviour in the pigeon. Plenum, New York, pp 409–430Google Scholar
  78. Keeton WT (1971) Magnets interfere with pigeon homing. Proc Natl Acad Sci U S A 68(1):102–106PubMedCrossRefGoogle Scholar
  79. Kimchi T, Terkel J (2001) Magnetic compass orientation in the blind mole rat Spalax ehrenbergi. J Exp Biol 204:751–758PubMedGoogle Scholar
  80. Kirschvink JL, Gould JL (1981) Biogenic magnetite as a basis for magnetic field detection in animals. BioSystems 13:181–202PubMedCrossRefGoogle Scholar
  81. Kramer G (1953) Die Sonnenorientierung der Vögel. Verh Dtsch Zool Ges, Zool Anz Suppl 16:72–84Google Scholar
  82. Kruska D (1980) Domestikationsbedingte Hirngrössenänderungen bei Säugetieren. Z zool Syst Evolut-forsch 18:161–195Google Scholar
  83. Lednor AJ, Walcott C (1983) Homing pigeon navigation: the effects of in-flight exposure to a varying magnetic field. Comp Biochem Physiol 76A(4):665–671CrossRefGoogle Scholar
  84. Lipp HP (1996) “Columba militaris helvetica”: Biologie und Verhaltensleistungen der Schweizer Armeebrieftauben. In: Rehkämper G, Greven H (eds) Beiträge zur Biologie der Haus- und Nutztiere. Acta Biol Benrodis (Suppl 3):85–103Google Scholar
  85. Lipp HP, Vyssotski AL, Wolfer DP, Renaudineau S, Savini M, Tröster G, Dell’Omo G (2004) Pigeon homing along highways and exits. Curr Biol 14:1239–1249PubMedCrossRefGoogle Scholar
  86. Mai JK, Semm P (1990) Patterns of glucose utilization following magnetic stimulation. J Hirnforsch 31:331–336PubMedGoogle Scholar
  87. Matthews GVT (1953) The orientation of untrained pigeons: a dichotomy in the orientation process. J Exp Biol 30:268–276Google Scholar
  88. Mayr E (1963) Animal species and evolution. Belknap, CambridgeGoogle Scholar
  89. Meade J, Biro D, Guilford T (2005) Homing pigeons develop local route stereotypy. Proc R Soc B 272:17–23PubMedCrossRefGoogle Scholar
  90. Meade J, Biro D, Guilford T (2006) Route recognition in the homing pigeon, Columba livia. Anim Behav 72:975–980CrossRefGoogle Scholar
  91. Michener M, Walcott C (1967) Homing of single pigeons-analyses of tracks. J Exp Biol 47:99–131PubMedGoogle Scholar
  92. Mora CV, Davison M, Wild JM, Walker MM (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511PubMedCrossRefGoogle Scholar
  93. Muheim R, Moore FR, Phillips JB (2006) Calibration of magnetic and celestial compass cues in migratory birds- a review of cue-conflict experiments. J Exp Biol 209:2–17PubMedCrossRefGoogle Scholar
  94. Nadel L, Hardt O (2004) The spatial brain. Neuropsychology 18:473–476PubMedCrossRefGoogle Scholar
  95. Nardi D, Bingman VP (2007) Asymmetrical participation of the left and right hippocampus for representing environmental geometry in homing pigeons. Behav Brain Res 178:160–171PubMedCrossRefGoogle Scholar
  96. Papi F, Casini G (1990) Pigeons with ablated pyriform cortex home from familiar but not from unfamiliar sites. Proc Natl Acad Sci U S A 87:3783–3787PubMedCrossRefGoogle Scholar
  97. Papi F, Ioalè P, Fiaschi V, Benvenuti S, Baldaccini NE (1974) Olfactory navigation of pigeons: the effect of treatment with odorous air currents. J Comp Physiol 94:187–193CrossRefGoogle Scholar
  98. Prior H, Wiltschko R, Stapput K, Güntürkün O, Wiltschko W (2004) Visual lateralization and homing in pigeons. Behav Brain Res 154:301–310PubMedCrossRefGoogle Scholar
  99. Rashid N, Andrew RJ (1989) Right hemisphere advantage for topographical orientation in the domestic chick. Neuropsychologia 27:937–948PubMedCrossRefGoogle Scholar
  100. Rehkämper G (1981) Vergleichende Architektonik des Neocortex der Insectivora. Z Zool Syst Evolutionsforsch 19:233–263CrossRefGoogle Scholar
  101. Rehkämper G, Zilles K (1991) Parallel evolution in mammalian and avian brains: cytoarchitectonical and cytochemical analysis. Cell Tissue Res 263:3–28PubMedCrossRefGoogle Scholar
  102. Rehkämper G, Haase E, Frahm HD (1988) Allometric comparison of brain weight and brain structure volumes in different breeds of the domestic pigeon, Columba livia f.d. (Fantails, Homing Pigeons, Strasser). Brain Behav Evol 31:141–149PubMedCrossRefGoogle Scholar
  103. Rehkämper G, Kart E, Frahm HD, Werner CW (2003) Discontinuous variability of brain composition among domestic chicken breeds. Brain Behav Evol 61:59–69PubMedCrossRefGoogle Scholar
  104. Rehkämper G, Frahm HD, Cnotka J (2008) Mosaic evolution and adaptive brain component alteration under domestication seen on the background of evolutionary theory. Brain Behav Evol 71:115–126PubMedCrossRefGoogle Scholar
  105. Reiner A, Karten HJ (1985) Comparison of olfactory bulb projections in pigeons and turtles. Brain Behav Evol 27:11–27PubMedCrossRefGoogle Scholar
  106. Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Güntürkün O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Com Neurol 473:377–414CrossRefGoogle Scholar
  107. Rice SH (2004) Evolutionary theory. Mathematical and conceptual foundations. Sinauer, SunderlandGoogle Scholar
  108. Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78(2):707–718PubMedCrossRefGoogle Scholar
  109. Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W (2004) Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429:177–180PubMedCrossRefGoogle Scholar
  110. Rogers L (1996) Behavioral, structural and neurochemical asymmetries in the avian brain: a model system for studying visual development and processing. Neurosci Biobehav R 20:487–503CrossRefGoogle Scholar
  111. Rogers L, Anson JM (1979) Lateralisation of function in the chicken fore-brain. Pharmacol Biochem Be 10:679–686CrossRefGoogle Scholar
  112. Schmidt-König K (1990) The sun compass. Experientia 46:336–342CrossRefGoogle Scholar
  113. Schmidt-Koenig K, Schlichte HJ (1972) Homing in pigeons with impaired vision. Proc Natl Acad Sci U S A 69(9):2446–2447PubMedCrossRefGoogle Scholar
  114. Schmidt-Koenig K, Walcott C (1978) Tracks of pigeon homing with frosted lenses. Anim Behav 26:480–486CrossRefGoogle Scholar
  115. Semm P (1983) Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons. Comp Biochem Physiol 76A(4):683–689CrossRefGoogle Scholar
  116. Semm P, Demaine C (1986) Neurophysiological properties of magnetic cells in the pigeon’s visual system. J Comp Physiol A 159:619–625PubMedCrossRefGoogle Scholar
  117. Semm P, Nohr D, Demaine C, Wiltschko W (1984) Neural basis of the magnetic compass: interactions of visual, magnetic and vestibular inputs in the pigeon’s brain. J Comp Physiol A 155:283–288CrossRefGoogle Scholar
  118. Shapiro E, Wieraszko A (1996) Comparative, in vitro, studies of hippocampal tissue from homing and non-homing pigeon. Brain Res 725:199–206PubMedGoogle Scholar
  119. Sherry DF, Jacobs LF, Gaulin SJC (1992) Spatial memory and adaptive specialization of the hippocampus. Trends Neurosci 15(8):298–303PubMedCrossRefGoogle Scholar
  120. Shimizu T, Bowers AN (1999) Visual circuits of the avian telencephalon: evolutionary implications. Behav Brain Res 98:183–191PubMedCrossRefGoogle Scholar
  121. Sossinka R (1982) Domestication in birds. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol VI. Academic, New York, pp 173–403Google Scholar
  122. Stapput K, Thalau P, Wiltschko R, Wiltschko W (2008) Orientation of birds in total darkness. Curr Biol 18:602–606PubMedCrossRefGoogle Scholar
  123. Steiner I, Bürgi C, Werffeli S, Dell’Omo G, Valenti P, Tröster G, Wolfer DP, Lipp HP (2000) A GPS logger and software for analysis of homing in pigeons and small mammals. Physiol Behav 71:589–596PubMedCrossRefGoogle Scholar
  124. Stephan H (1975) Allocortex. In: Bargmann W (ed) Handbuch der mikroskopischen Anatomie des Menschen, 4. Band Nervensystem. Springer, Heidelberg, pp 1–998Google Scholar
  125. Stephan H, Baron G, Frahm HD (1991) Comparative brain research in mammals. Insectivora, vol 1. Springer, BerlinGoogle Scholar
  126. Strasser R, Bingman VP, Ioalè P, Casini G, Bagnoli P (1998) The homing pigeon hippocampus and the development of landmark navigation. Dev Psychobiol 33:305–315PubMedCrossRefGoogle Scholar
  127. Tommasi L, Vallortigara G (2001) Encoding of geometric and landmark information in the left and right hemisphere of the avian brain. Behav Neurosci 115:602–613PubMedCrossRefGoogle Scholar
  128. Tommasi L, Vallortigara G (2004) Hemispheric processing of landmark and geometric information in male and female domestic chicks (Gallus gallus). Behav Brain Res 155:85–96PubMedCrossRefGoogle Scholar
  129. Tommasi L, Gagliardo A, Andrew RJ, Vallortigara G (2003) Separate processing mechanisms for encoding of geometric and landmark information in the avian hippocampus. Eur J Neurosci 17:1695–1702PubMedCrossRefGoogle Scholar
  130. Ulrich C, Prior H, Duka T, Leshchins’ka I, Valenti P, Güntürkün O, Lipp HP (1999) Left-hemispheric superiority for visuospatial orientation in homing pigeons. Behav Brain Res 104:169–178PubMedCrossRefGoogle Scholar
  131. Underwood H, Steele CT, Zivkovic B (2001) Circadian organization and the role of the pineal in birds. Microsc Res Techniq 53:48–62CrossRefGoogle Scholar
  132. Vallortigara G (2000) Comparative neuropsychology of the dual brain: a stroll through animals’ left and right perceptual worlds. Brain Lang 73:189–219PubMedCrossRefGoogle Scholar
  133. Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–633PubMedGoogle Scholar
  134. Vallortigara G, Regolin L, Bortolomiol G, Tommasi L (1996) Lateral asymmetries due to preferences in eye use during visual discrimination learning in chicks. Behav Brain Res 74:135–143PubMedCrossRefGoogle Scholar
  135. Vallortigara G, Rogers LJ, Bisazza A (1999) Possible evolutionary origins of cognitive brain lateralization. Brain Res Rev 30:164–175PubMedCrossRefGoogle Scholar
  136. Vargas JP, Petruso EJ, Bingman VP (2004) Hippocampal formation is required for geometric navigation in pigeons. Eur J Neurosci 20:1937–1944PubMedCrossRefGoogle Scholar
  137. Vargas JP, Siegel JJ, Bingman VP (2006) The effects of a changing magnetic field on single-unit activity in the homing pigeon hippocampus. Brain Res Bull 70:158–164PubMedCrossRefGoogle Scholar
  138. Visalberghi E, Alleva E (1975) Magnetic influences on pigeon homing. Biol Bull 125:246–256Google Scholar
  139. Visalberghi E, Foa A, Baldaccini NE, Alleva E (1978) New experiments on the homing ability of the rock pigeon. Monit Zool Ital (NS) 12:199–209Google Scholar
  140. Von Frisch K (1950) Die Sonne als Kompass im Leben der Bienen. Experientia 6:210–221CrossRefGoogle Scholar
  141. Vos HZN, Coemans MAJM, Nuboer JFW (1994) The photopic sensitivity of the yellow field of the pigeon’s retina to ultraviolet light. Vision Res 34(11):1419–1425CrossRefGoogle Scholar
  142. Vyssotski AL, Serkov AN, Itskov PM, Dell’omo G, Latanov AV, Wolfer DP, Lipp HP (2006) Miniature neurologgers for flying pigeons: multichannel EEG and action and field potentials in combination with GPS recording. J Neurophysiol 95:1263–1273PubMedCrossRefGoogle Scholar
  143. Wada Y, Okano T, Adachi A, Ebihara S, Fukada Y (1998) Identification of rhodopsin in the pigeon deep brain. FEBS Lett 424:53–56PubMedCrossRefGoogle Scholar
  144. Wagner G (1983) Natural geomagnetic anomalies and homing in pigeons. Comp Biochem Physiol 76A(4):691–700CrossRefGoogle Scholar
  145. Walcott C (2005) Multi-modal orientation cues in homing pigeons. Integr Comp Biol 45:574–581CrossRefGoogle Scholar
  146. Walcott C, Gould JL, Lednor AJ (1988) Homing of magnetized and demagnetized pigeons. J Exp Biol 134:27–41PubMedGoogle Scholar
  147. Walker MM (1998) On a wing and a vector: a model for magnetic navigation by homing pigeons. J Theor Biol 192:341–349PubMedCrossRefGoogle Scholar
  148. Wallenberg A (1898) Eine Verbindung caudaler Hirnteile der Taube mit dem Striatum. Neurologisches Zentralblatt 17:300–302Google Scholar
  149. Wallraff HG (2001) Navigation by homing pigeons: updated perspective. Ethol Ecol Evol 13:1–48Google Scholar
  150. Wallraff HG (2005) Avian navigation: pigeon homing as a paradigm. Springer, BerlinGoogle Scholar
  151. Williams H, Crane LA, Hale TK, Esposito MA, Nottebohm F (1992) Right-side dominance for song control in the zebra finch. J Neurobiol 23:1006–1020PubMedCrossRefGoogle Scholar
  152. Wiltschko W (1983a) Compass used by birds. Comp Biochem Physiol 76A(4):709–717CrossRefGoogle Scholar
  153. Wiltschko R (1983b) The ontogeny of orientation in young pigeons. Comp Biochem Physiol 76A(4):701–708CrossRefGoogle Scholar
  154. Wiltschko R (1986) The function of olfactory input in pigeon orientation: does it provide navigational information or play another role? J Exp Biol 199:113–119Google Scholar
  155. Wiltschko R (1992) Das Verhalten verfrachteter Vögel. Vogelwarte 36:249–310Google Scholar
  156. Wiltschko R, Wiltschko W (1985) Pigeon homing: change in navigational strategy during ontogeny. Anim Behav 33:583–590CrossRefGoogle Scholar
  157. Wiltschko R, Wiltschko W (1989) Pigeon homing: olfactory orientation-a paradox. Behav Ecol Sociobiol 24:163–173CrossRefGoogle Scholar
  158. Wiltschko R, Wiltschko W (2003) Avian navigation: from historical to modern concepts. Anim Behav 65:257–272CrossRefGoogle Scholar
  159. Wiltschko R, Wiltschko W (2006) Magnetoreception. BioEssays 28(2):157–168PubMedCrossRefGoogle Scholar
  160. Wiltschko R, Haugh C, Walker M, Wiltschko W (1998) Pigeon homing: sun compass use in the southern hemisphere. Behav Ecol Sociobiol 43:297–300CrossRefGoogle Scholar
  161. Wiltschko R, Walker M, Wiltschko W (2000) Sun-compass orientation in homing pigeons: compensation for different rates of change in azimuth? J Exp Biol 203:889–894PubMedGoogle Scholar
  162. Wiltschko R, Schiffner I, Siegmund B (2007) Homing flights of pigeons over familiar terrain. Anim Behav 74:1229–1240CrossRefGoogle Scholar
  163. Wiltschko W, Wiltschko R (2001a) Clock-shift experiments with homing pigeons: a compromise between solar and magnetic information? Behav Ecol Sociobiol 49:393–400CrossRefGoogle Scholar
  164. Wiltschko W, Wiltschko R (2001b) The geomagnetic field and its role in directional orientation. In: Barth FG, Schmid A (eds) Ecology of sensing. Springer, BerlinGoogle Scholar
  165. Wiltschko W, Wiltschko R (2005) Magnetic orientation and magnetoreception in birds and other animals. J Comp Pysiol A 191:675–693CrossRefGoogle Scholar
  166. Wiltschko W, Wiltschko R (2007) Magnetoreception in birds: two receptors for two different tasks. J Ornithol 148(1):S61–S76CrossRefGoogle Scholar
  167. Wiltschko W, Wiltschko R, Keeton WT, Madden R (1983) Growing up in an altered magnetic field affects the initial orientation of young homing pigeons. Behav Ecol Sociobiol 12:135–142CrossRefGoogle Scholar
  168. Wiltschko W, Wiltschko R, Walcott C (1987) Pigeon homing: different effects of olfactory deprivation in different countries. Behav Ecol Sociobiol 21:333–342CrossRefGoogle Scholar
  169. Wiltschko W, Traudt J, Güntürkün O, Prior H, Wiltschko R (2002) Lateralization of magnetic compass orientation in a migratory bird. Nature 419:467–470PubMedCrossRefGoogle Scholar
  170. Wiltschko W, Munro U, Ford H, Wiltschko R (2006) Bird navigation: what type of information does the magnetite-based receptor provide? Proc R Soc B 273:2815–2820PubMedCrossRefGoogle Scholar
  171. Yoshimura T, Yasuo S, Suzuki Y, Makino E, Yokota Y, Ebihara S (2001) Identification of the suprachiasmatic nucleus in birds. Am J Physiol Reg Integr Comp Physiol 280:R1185–R1189Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Study Group Behaviour and Brain, C.&O. Vogt, Institute of Brain ResearchUniversity of DüsseldorfDüsseldorfGermany
  2. 2.Scientific Poultry Yard of the German Association of Poultry BreedersRommerskirchenGermany

Personalised recommendations