, Volume 96, Issue 7, pp 803–811 | Cite as

Theory of Bose–Einstein condensation mechanism for deuteron-induced nuclear reactions in micro/nano-scale metal grains and particles

  • Yeong E. KimEmail author


Recently, there have been many reports of experimental results which indicate occurrences of anomalous deuteron-induced nuclear reactions in metals at low energies. A consistent conventional theoretical description is presented for anomalous low-energy deuteron-induced nuclear reactions in metal. The theory is based on the Bose–Einstein condensate (BEC) state occupied by deuterons trapped in a micro/nano-scale metal grain or particle. The theory is capable of explaining most of the experimentally observed results and also provides theoretical predictions, which can be tested experimentally. Scalabilities of the observed effects are discussed based on theoretical predictions.


Bose–Einstein condensation Deuteron fusion Nuclear reactions Metals 


  1. Abrikosov AA, Gorkov LP, Dzyaloshinki IE (1963) Methods of quantum field theory in statistical physics (revised English edition translated by R.A. Silverman). Dover, New YorkGoogle Scholar
  2. Anderson MH, Ensher JR, Matthews MR, Wieman CE, Cornell EA (1995) Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269:198–201PubMedCrossRefGoogle Scholar
  3. Arata Y, Zhang YC (2008) The establishment of solid nuclear fusion reactor. J. High Temp. Soc 34(2):85–94Google Scholar
  4. Barer QM (1941) Diffusion in and through solids. Cambridge University Press, New York, NYGoogle Scholar
  5. Bogolubov N (1966) On the theory of superfluidity. J Phys 11:23–29Google Scholar
  6. Bose SN (1924) Planck’s law and the light quantum hypothesis. Z Phys 26:178–181CrossRefGoogle Scholar
  7. Bradley CC, Sackett CA, Tollett JJ, Hulet RG (1995) Evidence of Bose–einstein condensation in an atomic gas with attractive interactions. Phys Rev Lett 75:1687–1690PubMedCrossRefGoogle Scholar
  8. Bush B, Lagowski JJ, Miles MH, Os GS (1991) Helium production during the electrolysis of D2O in cold fusion. J Electroanal Chem 304:271CrossRefGoogle Scholar
  9. Coehn A (1929) Proof of the existence of protons in metals (with discussion). Z Electrochem 35:676–680Google Scholar
  10. Coehn A, Specht W (1930) Ueber die Beteiligung von Protonen an der Elektrizitaetsleitung in Metallen (Role of protons in electric conductivity of metals). Z Phys 83:1–31Google Scholar
  11. Davis KB, Mewes M–O, Andrews MR, Van Druten NJ, Durfee DS, Kurn DM, Ketterle W (1995) Bose–Einstein condensation in a gas of sodium atoms. Phys Rev Lett 75:3969–3973PubMedCrossRefGoogle Scholar
  12. Dirac PAM (1935) The Principles of Quantum Mechanics. second edition, Clarendon Press, Oxford Chapter XI, Section 62.Google Scholar
  13. Duhm B (1935) Diffusion of hydrogen in palladium. Z Phys 94:435–456Google Scholar
  14. Einstein A (1924) Quantentheorie des einatomigen idealen Gasses (Quantum theory of monoatomic ideal gasses). Sitz. Preuss Akad. Wiss.:261-267Google Scholar
  15. Esry BD (1997) Hartree–Fock theory for Bose–Einstein condensates and the inclusion of correlation effects. Phys Rev A 55:1147–1159CrossRefGoogle Scholar
  16. Fleischmann M, Pons S (1989) Electrochemically induced nuclear fusion of deuterium. J. Electroanal. Chem. 261:301-308; Errata (1989) J. Electroanal. Chem. 263:187Google Scholar
  17. Fukai Y (2005) The Metal–Hydrogen System, 2nd edn. Springer, BerlinGoogle Scholar
  18. Galitskii VM (1958) The energy spectrum of non-ideal Fermi-gas. Sov Phys 7:104–112Google Scholar
  19. Galitskii VM, Migdal AB (1958) Application of quantum field theory methods to the many-body problem. Sov Phys JETP 7:96–104Google Scholar
  20. Galitskii VM,Yakimets VV (1966) Particle relaxation in a maxwell gas. Zh. Eksp. Teor. 51:957- 961 [(1967) JETP; 24:637-641].Google Scholar
  21. Gell-Mann M, Tsallis C (eds) (2004) Non-Extensive Entropy-Interdisciplinary Applications. Oxford University Press, OxfordGoogle Scholar
  22. Griffin A, Snoke DW, Stringari S (1995) Bose–Einstein Condensation. Cambridge University Press, New York, NYGoogle Scholar
  23. Hansen KH, Worren T, Stempel S, Laegsgaard E, Baumer M, Freund H–J, Besenbacher F, Stensgaard I (1999) Palladium nanocrystals on Al2O3: structure and adhesion energy. Phys Rev Lett 83:4120–4123CrossRefGoogle Scholar
  24. Kadanoff LP, Baym G (1962) Quantum Statistical Mechanics. Benjamin, New York, Chapters 1–4Google Scholar
  25. Kim YE, Zubarev AL (2000a) Nuclear fusion for bose nuclei confined in ion traps. Fusion Technology 37:151–156Google Scholar
  26. Kim YE, Zubarev AL (2000b) Ultra low-energy nuclear fusion of Bose nuclei in nano-scale ion traps. Italian Physical Society Proceedings 70:375–384Google Scholar
  27. Kim YE, Zubarev AL (2001) Ground state of charged bosons confined in a harmonic trap. Physical Review A 64:013603-1–013603-6Google Scholar
  28. Kim YE, Zubarev AL (2002) Equivalent linear two-body method for Bose–Einstein condensates in time-dependent harmonic traps. Physical Review A 66:053602-1–053602-7Google Scholar
  29. Kim YE, Zubarev AL (2006) Effect of a generalized particle momentum distribution on plasma nuclear fusion rates. Jpn J Appl Phys 45:L452–L455Google Scholar
  30. Kim YE, Zubarev AL (2007a) Theoretical interpretation of anomalous enhancement of nuclear reaction rates observed at low energies with metal targets. Jpn J Appl Phys 46:1656–1662CrossRefGoogle Scholar
  31. Kim YE, Zubarev AL (2007b) Quantum plasma nuclear fusion theory for anomalous enhancement of nuclear reaction rates observed at low energies with metal targets. Proceedings of the International Nuclear Physics Conference, Tokyo, Japan, June 3–8, 2007 (to be published by Japanese Physical Society)Google Scholar
  32. Kim YE, Kim YJ, Zubarev AL, Yoon JH (1997) Optical theorem formulation of low-energy nuclear reactions. Physical Review C 55:801–809CrossRefGoogle Scholar
  33. Lewis FA (1982) Palladium–hydrogen system 2. Platinum Met. Rev 26:20–27 70-78, 121-128Google Scholar
  34. Lipson AG, Lyakhov BF, Roussetski AS, Akimoto T, Mizuno T, Asami N, Shimada R, Miyashita S, Takahashi A (2000) Evidence for low-intensity D-D reaction as a result of exothermic deuterium desorption from Au/Pd/PdO:D heterostructure. Fusion Technol 38:238Google Scholar
  35. Marcheche JF, Rat J-C, Herold A (1976) Study of hydrogen-metal systems: potential induced by the diffusion of hydrogen in palladium. J Chim Phys Phys Chim Biol 73:983–987Google Scholar
  36. Martin PC, Schwinger J (1959) Theory of many-particle systems I. Phys Rev 115:1342–1373CrossRefGoogle Scholar
  37. McKubre MCH, Crouch-Baker S, Rocha-Filho RC, Smedley SI, Tanzella FL (1994) Isothermal flow calorimetric investigations of the D/Pd and H/Pd systems. J Electroanal Chem 368:55CrossRefGoogle Scholar
  38. Miles MH, Hollins RA, Bush BF, Logowski JJ, Miles RE (1993) Correlation of excess power and helium production during D2O and H2O electrolysis using palladium cathodes. J Electroanal Chem 346:99CrossRefGoogle Scholar
  39. Miles MH, Bush B, Lagowski JJ (1994) Anomalous effects involving excess power, radiation and helium production during D2O electrolysis using palladium cathodes. Fusion Technol 25:478Google Scholar
  40. Morkel M, Rupprechter G, Freund H-J (2005) Finite size effects on supported Pd nanoparticles: interaction of hydrogen with CO and C2H4. Surf Sci 588:L209–L219CrossRefGoogle Scholar
  41. Mosier-Boss PA, Szpak S (1999) The Pd/nH system: transport processes and development of thermal instabilities. Nuovo Cimeno Soc Ital Fis A 112:577–587CrossRefGoogle Scholar
  42. Mosier-Boss PA, Szpak S, Gordon FE, Forsley LPG (2007) Use of CR-39 in Pd/D Co-deposition experiments. Eur Phys J Appl Phys 40:293–303CrossRefGoogle Scholar
  43. Mosier-Boss PA, Szpak S, Gordon FE, Forsley LPG (2008) Triple tracks in CR-39 as the result of Pd-D Co- deposition: evidence of energetic neutrons. Naturwissenschaften doi: 10.1007/s00114-008-0449-x PubMedGoogle Scholar
  44. National Research Council (1995) Plasma Science. National Academy Press, Washington, D.C, p 1Google Scholar
  45. Shaikhutdinov Sh, Helmeier M, Hoffmann J, Meusel I, Richter B, Baumer M, Kuhlenbeck H, Libuda J, Freund H–J, Oldman R, Jackson SD, Konvicka C, Schmid M, Varga P (2002) Interaction of oxygen with palladium deposited on a thin alumina film. Surf Sci 501:270–281CrossRefGoogle Scholar
  46. Storms E (1993) Measurements of excess heat from a Pons–Fleischmann-type electrolytic cell using palladium sheet. Fusion Technol 23:230Google Scholar
  47. Storms E (1996) How to produce the Pons–Fleischmann effect. Fusion Technol 29:261Google Scholar
  48. Storms E, Talcott C (1990) Electrolytic tritium production. Fusion Technol 17:680Google Scholar
  49. Szpak S, Mosier-Boss PA (1996) On the behavior of the cathodically polarized Pd/D system: a response to Vigier’s comments. Phys Lett A 221:141–143CrossRefGoogle Scholar
  50. Szpak S, Mosier-Boss PA, Smith JJ (1996) On the behaviour of the cathodically polarized Pd/D System: search for emanating radiation. Phys Lett A 210:382–390CrossRefGoogle Scholar
  51. Szpak S, Mosier-Boss PA, Boss RD, Smith JJ (1998) On the behavior of the Pd/D system: evidence for tritium production. Fusion Technol 33:38–51Google Scholar
  52. Szpak S, Mosier-Boss PA, Miles MH, Fleischmann M (2004) Thermal behavior of polarized Pd/D electrodes prepared by co-deposition. Thermochimica Acta 410:101–107CrossRefGoogle Scholar
  53. Szpak S, Mosier-Boss PA, Young C, Gordon FE (2005a) The effect of an external electric field on surface morphology of co-deposited Pd/D films. J Electroanal Chem 580:284–290CrossRefGoogle Scholar
  54. Szpak S, Mosier-Boss PA, Young C, Gordon FE (2005b) Evidence of nuclear reactions in the Pd lattice. Naturwissenschaften 92:394–397PubMedCrossRefGoogle Scholar
  55. Szpak S, Mosier-Boss PA, Gordon FE (2007) Further evidence of nuclear reactions in the Pd/D lattice: emission of charged particles. Naturwissenschaften 94:511–514PubMedCrossRefGoogle Scholar
  56. Tsallis C (1988) Possible generalization of Boltzmann–Gibbs statistics. J Stat Phys 52:479–487CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Physics DepartmentPurdue UniversityWest LafayetteUSA

Personalised recommendations