Advertisement

Naturwissenschaften

, Volume 96, Issue 7, pp 857–861 | Cite as

Decision rules for egg recognition are related to functional roles and chemical cues in the queenless ant Dinoponera quadriceps

  • Ivelize C. Tannure-NascimentoEmail author
  • Fabio S. NascimentoEmail author
  • José O. Dantas
  • Ronaldo Zucchi
Short Communication

Abstract

The capacity to distinguish colony members from strangers is a key component in social life. In social insects, this extends to the brood and involves discrimination of queen eggs. Chemical substances communicate colony affiliation for both adults and brood; thus, in theory, all colony members should be able to recognize fellow nestmates. In this study, we investigate the ability of Dinoponera quadriceps workers to discriminate nestmate and non-nestmate eggs based on cuticular hydrocarbon composition. We analyzed whether cuticular hydrocarbons present on the eggs provide cues of discrimination. The results show that egg recognition in D. quadriceps is related to both age and the functional role of workers. Brood care workers were able to distinguish nestmate from non-nestmate eggs, while callow and forager workers were unable to do so.

Keywords

Dinoponera quadriceps Functional roles Egg recognition 

Notes

Acknowledgement

We thank Margaret Couvillon, Hans Kelstrup, and anonymous referees for the comments on the manuscript and suggestions. We also are grateful to Isabel C. Turatti for the chemical analysis of eggs. Fapesp and CNPq support the research of authors. The experiments comply with the current laws of the country in which they were performed.

Supplementary material

114_2009_535_MOESM1_ESM.doc (56 kb)
ESM 1 (DOC 56 kb)
ESM 2

(MPG 1368 kb)

References

  1. Beekman M, Oldroyd BP (2008) When workers disunite: intraspecific parasitism by eusocial bees. Annu Rev Entomol 53:19–37. doi: 10.1146/annurev.ento.53.103106.093515 PubMedCrossRefGoogle Scholar
  2. Bonavita-Cougourdan A, Clément JL, Lange C (1987) Nestmate recognition: the role of cuticular hydrocarbons in the ant Camponotus vagus Scop. J Entomol Sci 22:1–10Google Scholar
  3. Brandt M, Foitzik S, Fischer-Blass B, Heinze J (2005) The coevolutionary dynamics of obligate ant social parasite systems-between prudence and antagonism. Biol Rev Camb Philos Soc 80:251–267. doi: 10.1017/S1464793104006669 PubMedCrossRefGoogle Scholar
  4. Breed MD (1998) Chemical cues in kin recognition: criteria for identification, experimental approaches, and the honey bee as an example. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects: ants, wasps, bees, and termites. Westview Press, Boulder, CO, pp 57–78Google Scholar
  5. Carlin N, Hölldobler B (1986) The kin recognition system of carpenter ants (Camponotus spp.). I. Hierarchical cues in small colonies. Behav Ecol Sociobiol 19:123–134. doi: 10.1007/BF00299947 CrossRefGoogle Scholar
  6. Couvillon MJ, Caple JP, Endsor SL, Karcher M, Russell TE, Storey DE, Ratnieks FLW (2007) Nest-mate recognition template of guard honeybees (Apis mellifera) is modified by wax comb transfer. Biol Lett 3:228–230. doi: 10.1098/rsbl.2006.0612 PubMedCrossRefGoogle Scholar
  7. Crosland MWJ (1988) Inability to discriminate between related and unrelated larvae in the ant Rhytidoponera confusa (Hymenoptera: Formicidae). Ann Entomol Soc Am 81:844–850Google Scholar
  8. Crozier RH, Dix MW (1979) Analysis of two genetic models for the innate components of colony odour in social Hymenoptera. Behav Ecol Sociobiol 4:217–224. doi: 10.1007/BF00297645 CrossRefGoogle Scholar
  9. Dapporto L, Dani FR, Turillazzi S (2007) Social dominance molds cuticular and egg chemical blends in a paper wasp. Curr Biol 17:504–505. doi: 10.1016/j.cub.2007.05.002 CrossRefGoogle Scholar
  10. Denis D, Blatrix R, Fresneau D (2006) How an ant manages to display individual and colonial signals by using the same channel. J Chem Ecol 32:1647–1661. doi: 10.1007/s10886-006-9099-7 PubMedCrossRefGoogle Scholar
  11. Dietemann V, Peeters C, Liebig J, Thivet V, Hölldobler B (2003) Cuticular hydrocarbons mediate discrimination of reproductives and nonreproductives in the ant Myrmecia gulosa. Proc Natl Acad Sci USA 100:10341–10346. doi: 10.1073/pnas.1834281100 PubMedCrossRefGoogle Scholar
  12. Dreier S, van Zweden JS, D’Ettorre P (2007) Long-term memory of individual identity in ant queens. Biol Lett 3:459–462. doi: 10.1098/rsbl.2007.0224 doi:10.1098/rsbl.2007.0224 PubMedCrossRefGoogle Scholar
  13. Endler A, Liebig J, Schmitt T, Parker JE, Jones GR, Schreier P, Hölldobler B (2004) Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. Proc Natl Acad Sci USA 101:2945–2950. doi: 10.1073/pnas.0308447101 PubMedCrossRefGoogle Scholar
  14. Errard C (1994) Long-term memory involved in nestmate recognition in ants. Anim Behav 48:263–271. doi: 10.1006/anbe.1994.1240 CrossRefGoogle Scholar
  15. Fénéron R (1993) Ethogenèse et reconnaissance interindividuelle. Influence de l’expérience précoce chez une fourmi Ponérine (Ectatomma tuberculatum Olivier). PhD thesis, Université Paris-Nord, VilletaneuseGoogle Scholar
  16. Fénéron R, Jaisson P (1992) Nestmate-brood recognition among workers of different social status in Ectatomma tuberculatum Olivier (Formicidae, Ponerinae). Behav Processes 27:45–52. doi: 10.1016/0376-6357(92)90039-G CrossRefGoogle Scholar
  17. Fénéron R, Jaisson P (1995) Ontogeny of nestmate brood recognition in a primitive ant, Ectatomma tubercalutum Olivier (Ponerinae). Anim Behav 50:9–14. doi: 10.1006/anbe.1995.0215 CrossRefGoogle Scholar
  18. Hara K (2003) Queen discrimination ability of ant workers (Camponotus japonicus) coincides with brain maturation. Brain Behav Evol 62:56–64. doi: 10.1159/000071960 PubMedCrossRefGoogle Scholar
  19. Helanterä H, Martin SJ, Ratnieks FLW (2007) Prior experience with eggs laid by non-nestmate queens induces egg acceptance errors in ant workers. Behav Ecol Sociobiol 62:223–228. doi: 10.1007/s00265-007-0456-5 CrossRefGoogle Scholar
  20. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge, MA, p 732Google Scholar
  21. Isingrini M, Lenoir A (1988) Colony recognition of larvae by young workers of Cataglyphis cursor (Hymenoptera, Formicidae). Behav Processes 17:69–72. doi: 10.1016/0376-6357(88)90052-6 CrossRefGoogle Scholar
  22. Lahav S, Soroker V, Hefetz A, Vander Meer RK (1999) Direct behavioral evidence for hydrocarbons as ant recognition discriminators. Naturwissenschaften 86:246–249. doi: 10.1007/s001140050609 CrossRefGoogle Scholar
  23. Lenoir A, Fresneau D, Errard C, Hefetz A (1999) The individuality and the colonial identity in ants: the emergence of the social representation concept. In: Detrain C, Deneubourg JL, Pasteels J (eds) Information processing in social insects. Birkhäuser, Basel, pp 219–237Google Scholar
  24. Lenoir A, D’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599. doi: 10.1146/annurev.ento.46.1.573 PubMedCrossRefGoogle Scholar
  25. Monnin T, Peeters C (1997) Cannibalism of subordinates’ eggs in the monogynous queenless ant Dinoponera quadriceps. Naturwissenschaften 84:499–502. doi: 10.1007/s001140050433 CrossRefGoogle Scholar
  26. Monnin T, Peeters C (1999) Dominance hierarchy and reproductive conflicts among subordinates in a monogynous queenless ant. Behav Ecol 10:323–332. doi: 10.1093/beheco/10.3.323 CrossRefGoogle Scholar
  27. Nunes TM, Nascimento FS, Turatti IC, Lopes NP, Zucchi R (2008) Nestmate recognition in a stingless bee: does the similarity of chemical cues determine guard acceptance? Anim Behav 75:1165–1171. doi: 10.1016/j.anbehav.2007.08.028 CrossRefGoogle Scholar
  28. Obin MS, Vander Meer RK (1989) Mechanism of template-label matching in fire ant, Solenopsis invicta Buren, nestmate recognition. Anim Behav 38:430–435. doi: 10.1016/S0003-3472(89)80036-3 CrossRefGoogle Scholar
  29. Ozaki M, Wada-Katsumata A, Fujikawa K, Iwasaki M, Yokohari F, Satoji Y, Nisimura T, Yamaoka R (2005) Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309:311–314. doi: 10.1126/science.1105244 PubMedCrossRefGoogle Scholar
  30. Ratnieks FLW, Visscher PK (1989) Worker policing in honeybees. Nature 342:796–797. doi: 10.1038/342796a0 CrossRefGoogle Scholar
  31. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, New YorkGoogle Scholar
  32. Stuart R (1992) Nestmate recognition and the ontogeny of acceptability in the ant, Leptothorax curvispinosus. Behav Ecol Sociobiol 30:403–408. doi: 10.1007/BF00176175 CrossRefGoogle Scholar
  33. Tannure-Nascimento IC, Nascimento FS, Zucchi R (2008) The look of royalty: visual and odour signals of reproductive status in a paper wasp. Proc R Soc Lond B Biol Sci 275:2555–2561. doi: 10.1098/rspb.2008.0589 CrossRefGoogle Scholar
  34. Vander Meer RK, Morel L (1998) Nestmate recognition in ants. In: Vander Meer RK, Breed M, Winston M, Espelie K (eds) Pheromone communication in social insects. Westview Press, Boulder, CO, pp 79–103Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Departamento de Biologia, FFCLRPUniversidade de São PauloRibeirão PretoBrazil
  2. 2.Departamento de Biologia, CCBSUniversidade Federal de SergipeSão CristóvãoBrazil

Personalised recommendations