, Volume 96, Issue 5, pp 631–635 | Cite as

Contribution of anadromous fish to the diet of European catfish in a large river system

  • Jari Syväranta
  • Julien Cucherousset
  • Dorothée Kopp
  • Aurélia Martino
  • Régis Céréghino
  • Frédéric Santoul
Short Communication


Many anadromous fish species, when migrating from the sea to spawn in fresh waters, can potentially be a valuable prey for larger predatory fish, thereby efficiently linking these two ecosystems. Here, we assess the contribution of anadromous fish to the diet of European catfish (Silurus glanis) in a large river system (Garonne, southwestern France) using stable isotope analysis and allis shad (Alosa alosa) as an example of anadromous fish. Allis shad caught in the Garonne had a very distinct marine δ13C value, over 8‰ higher after lipid extraction compared to the mean δ13C value of all other potential freshwater prey fish. The δ13C values of European catfish varied considerably between these two extremes and some individuals were clearly specializing on freshwater prey, whereas others specialized on anadromous fish. The mean contribution of anadromous fish to the entire European catfish population was estimated to be between 53% and 65%, depending on the fractionation factor used for δ13C.


Alosa alosa Anadromous fish Migration Mixing model Silurus glanis Stable isotopes 


  1. Adams CE, Bissett N, Newton J, Maitland PS (2008) Alternative migration and host parasitism strategies and their long-term stability in river lampreys from the River Endrick, Scotland. J Fish Biol 72:2456–2466CrossRefGoogle Scholar
  2. Baglinière JL, Sabatié MR, Rochard E, Alexandrino P, Aprahamian MW (2003) The allis shad (Alosa alosa): biology, ecology, range, and status of populations. In: Limburg KE, Waldman JR (eds) Biodiversity, status and conservation of the World’s shad. American Fisheries Society Symposium 35, pp 85–102Google Scholar
  3. Bearhop S, Adams CE, Waldron S, Fuller RA, MacLeod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012CrossRefGoogle Scholar
  4. Bilby RE, Fransen BR, Bisson PA, Walter JK (1998) Response of juvenile coho salmon (Oncorhynchus kisutch) and steelhead (Oncorhynchus mykiss) to the addition of salmon carcasses to two streams in southwestern Washington, USA. Can J Fish Aquat Sci 55:1909–1918CrossRefGoogle Scholar
  5. Carol J, Zamorra L, García-Berthou E (2007) Preliminary telemetry data on the movement patterns and habitat use of European catfish (Silurus glanis) in a reservoir of the river Ebro, Spain. Ecol Freshw Fish 16:450–456CrossRefGoogle Scholar
  6. Copp GH, Britton RJ, Cucherousset J, García-Berthou E, Kirk R, Peeler E, Stakėnas S (2009) Voracious invader or benign feline? A review of the environmental biology of European catfish Silurus glanis in its native and introduced ranges. Fish and Fisheries In press Google Scholar
  7. Deegan LA, Garritt RH (1997) Evidence for spatial variability in estuarine food webs. Mar. Ecol. Prog Ser 147:31–47CrossRefGoogle Scholar
  8. DeNiro MJ, Epstein S (1977) Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197:261–263PubMedCrossRefGoogle Scholar
  9. Doucett RR, Power M, Power G, Caron F, Reist JD (1999) Evidence for anadromy in a southern relict population of Arctic charr from North America. J Fish Biol 55:84–93CrossRefGoogle Scholar
  10. Drevnick PE, Horgan MJ, Oris JT, Kynard BE (2006) Ontogenetic dynamics of mercury accumulation in Northwest Atlantic sea lamprey (Petromyzon marinus). Can J Fish Aquat Sci 63:1058–1066CrossRefGoogle Scholar
  11. Garman GC, Macko SA (1998) Contribution of marine-derived organic matter to an Atlantic coast, freshwater, tidal stream by anadromous clupeid fish. J N Am Benthol Soc 17:277–285CrossRefGoogle Scholar
  12. Harrod C, Grey J, McCarthy TK, Morissey M (2005) Stable isotope analyses provide new insights into ecological plasticity in a mixohaline population of European eel. Oecologia 144:673–683PubMedCrossRefGoogle Scholar
  13. Hesslein RH, Hallard KA, Ramlal P (1993) Replacement of sulfur, carbon and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, δ15N. Can J Fish Aquat Sci 50:2071–2076CrossRefGoogle Scholar
  14. Jardine TD, Gray MA, McWilliam SM, Cunjak RA (2005) Stable isotope variability in tissues of temperate stream fishes. T Am Fish Soc 134:1103–1110CrossRefGoogle Scholar
  15. Kiljunen M, Grey J, Sinisalo T, Harrod C, Immonen H, Jones RI (2006) A revised model for lipid–normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. J Appl Ecol 43:1213–1222CrossRefGoogle Scholar
  16. Kohler AE, Rugenski A, Taki D (2008) Stream food web response to salmon carcass analogue in two central Idaho, U.S.A streams. Freshwater Biol 53:446–460CrossRefGoogle Scholar
  17. Lassalle G, Béguer M, Beaulaton L, Rochard E (2008) Diadromous fish conservation plans need to consider global warming issues: an approach using biogeographical models. Biol Conserv 141:1105–1118CrossRefGoogle Scholar
  18. Lochet A (2006) Dévalaison des juvéniles et tactiques gagnantes chez la grande alose (Alosa alosa) et l’alose feinte (Alosa fallax). PhD-thesis, University of Bordeaux IGoogle Scholar
  19. MacAvoy SE, Macko SA, Garman GC (1998) Tracing marine biomass into tidal freshwater ecosystems using stable sulfur isotopes. Naturwissenschaften 85:544–546PubMedCrossRefGoogle Scholar
  20. MacAvoy SE, Macko SA, McIninch SP, Garman GC (2000) Marine nutrient contributions to freshwater apex predators. Oecologia 122:568–573CrossRefGoogle Scholar
  21. MacAvoy SE, Macko SA, Garman GC (2001) Isotopic turnover in aquatic predators: quantifying the exploitation of migratory prey. Can J Fish Aquat Sci 58:923–932CrossRefGoogle Scholar
  22. McCarthy ID, Waldron S (2000) Identifying migratory Salmo trutta using carbon and nitrogen stable isotope ratios. Rapid Commun Mass Spectrom 14:1325–1331PubMedCrossRefGoogle Scholar
  23. Pasquaud S (2006) Les relations trophiques: elements de structuration des peuplements ichtyologiques en milieu estuarien. PhD-thesis, University of Bordeaux IGoogle Scholar
  24. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  25. Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179CrossRefGoogle Scholar
  26. Rubenstein DR, Hobson KA (2004) From birds to butterflies: animal movement patterns and stable isotopes. Trends Ecol Evol 19:256–263PubMedCrossRefGoogle Scholar
  27. Syväranta J, Jones RI (2008) Changes in feeding niche widths of perch and roach following biomanipulation, revealed by stable isotope analysis. Freshwat Biol 53:425–434CrossRefGoogle Scholar
  28. Syväranta J, Keskinen T, Hämäläinen H, Karjalainen J, Jones RI (2008) Use of stable isotope analysis to evaluate the possible impact of fish migration on a lake biomanipulation. Aquat Conserv: Mar Freshwat Ecosyst 18:703–713CrossRefGoogle Scholar
  29. Wysujack K, Mehner T (2005) Can feeding of European catfish prevent cyprinids from reaching a size refuge? Ecol Freshw Fish 14:87–95CrossRefGoogle Scholar
  30. Zuanon JAS, Pezzato AC, Pezzato LE, Passos JRS, Barros MM, Ducatti C (2006) Muscle δ13C change in Nile tilapia (Oreochromis niloticus): effects of growth and carbon turnover. Comp Biochem Phys B 145:101–107CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jari Syväranta
    • 1
  • Julien Cucherousset
    • 2
  • Dorothée Kopp
    • 1
  • Aurélia Martino
    • 1
  • Régis Céréghino
    • 1
  • Frédéric Santoul
    • 1
  1. 1.EcoLab, UMR 5245 (CNRS-UPS-INPT)Université Paul SabatierToulouse Cedex 9France
  2. 2.Centre for Conservation Ecology and Environmental Change, School of Conservation SciencesBournemouth UniversityPooleUK

Personalised recommendations