Advertisement

Naturwissenschaften

, Volume 96, Issue 2, pp 279–288 | Cite as

Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas

  • Jürgen O. Metzger
  • Aloys Hüttermann
Original Paper

Abstract

An important aspect of present global energy scenarios is the assumption that the amount of biomass that can be grown on the available area is so limited that a scenario based on biomass as the major source of energy should be unrealistic. We have been investigating the question whether a Biomass Scenario may be realistic. We found that the global energy demand projected by the International Energy Agency in the Reference Scenario for the year 2030 could be provided sustainably and economically primarily from lignocellulosic biomass grown on areas which have been degraded by human activities in historical times. Moreover, other renewable energies will contribute to the energy mix. There would be no competition with increasing food demand for existing arable land. Afforestation of degraded areas and investment for energy and fuel usage of the biomass are not more expensive than investment in energy infrastructure necessary up to 2030 assumed in the fossil energy based Reference Scenario, probably much cheaper considering the additional advantages such as stopping the increase of and even slowly reducing the CO2 content of the atmosphere, soil, and water conservation and desertification control. Most importantly, investment for a Biomass Scenario would be actually sustainable, in contrast to investment in energy-supply infrastructure of the Reference Scenario. Methods of afforestation of degraded areas, cultivation, and energetic usage of lignocellulosic biomass are available but have to be further improved. Afforestation can be started immediately, has an impact in some few years, and may be realized in some decades.

Keywords

Afforestation Bioenergy Biofuel Biomass Energy scenario 

Supplementary material

114_2008_479_MOESM1_ESM.pdf (33 kb)
ESM 1 (PDF 32 KB).

References

  1. Agrawal R, Singh NR, Ribeiro FH, Delgass WN (2007) Sustainable fuel for the transportation sector. PNAS 104:4828–4833PubMedCrossRefGoogle Scholar
  2. Bongaarts J, Bulatao RA (eds) (2000) Beyond six billion: forecasting the world's population. Panel on Population Projections, Committee on Population, National Research Council, Washington, DC. http://www.nationalacademies.org
  3. BP (2008) Statistical review of world energy 2008. http://www.bp.com
  4. Bradshaw CJA, Sodhi NS, Peh KSH, Brook BW (2007) Global evidence that deforestation amplifies flood risk and severity in the developing world. Glob Chang Biol 13:2379–2395CrossRefGoogle Scholar
  5. Bridgwater AV (1999) Thermal biomass conversion technologies for energy and energy carrier production. In: Parmon VN, Tributsch H, Bridgwater AV, Hall DO (eds) Chemistry for the energy future. Blackwell Science, Oxford, pp 137–186Google Scholar
  6. Chamran F, Gessler PE, Chadwick OA (2002) Spatially explicit treatment of soil–water dynamics along a semiarid catena. Soil Sci Soc Am J 66:1571–1583CrossRefGoogle Scholar
  7. China National Committee for the Implementation of the UNCCD (2006) China National Report on the Implementation of the United Nation’s Convention to Combat Desertification, p.5. http://www.unccd.int/
  8. Dahmen N, Dinjus E, Henrich E (2007) Synthesis gas from biomass—problems and solutions en route to technical realization. Oil Gas—European Magazine 33(1):31–34Google Scholar
  9. Dietenberger MA, Anderson M (2007) Vision of the U.S. biofuel future: a case for hydrogen-enriched biomass gasification. Ind Eng Chem Res 46:8863–8874CrossRefGoogle Scholar
  10. Eichhorn J, Hüttermann A (1994) Effect of acidification on forest processes. In: Godbold DL, Hüttermann A (eds) Microbial ecology series. Wiley, New York, pp 129–162Google Scholar
  11. Faaji A (2006) Modern biomass conversion technologies. Mitig Adapt Strategies Glob Chang 11:343–375Google Scholar
  12. Fachagentur Nachwachsende Rohstoffe (eds) (2004) Biomasse-Vergasung—Der Königsweg für eine effiziente Strom- und Kraftstoffbereitstelung? Landwirtschaftsverlag GmbH, MünsterGoogle Scholar
  13. Fachagentur Nachwachsende Rohstoffe (eds) (2005) Synthetische Biokraftstoffe, Techniken—Potentiale—Perspektiven. Landwirtschaftsverlag GmbH, MünsterGoogle Scholar
  14. FAO Land and Water Development Division, based on the work of A. J. Bot, F.O. Nachtergaele, A. Young (2000a) Land resource potential and constraints at regional and country levels, Rome. ftp://ftp.fao.org/agl/agll/docs/wsr.pdfGoogle Scholar
  15. FAO (2000b) World soil resources reports 92, p.2, RomeGoogle Scholar
  16. FAO (2003) Terrastat database. Land resource potential and constraints statistics at country and regional level, Rome. http://www.fao.org/ag/agl/agll/terrastat/#terrastatdb
  17. FAO (2005) Global forest resources assessment 2005, FAO Forestry Paper 147; a) p. 99. http://www.fao.org/forestry/site/fra2005/en/
  18. Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges, and future direction. Energy Fuels 20:1727–1737CrossRefGoogle Scholar
  19. Fiedler E, Grossmann G, Kersebohm DE, Weiss G, Witte C (2000) Methanol. Ullmann's Encyclopedia of Industrial Chemistry, Internet Ed., Wiley, WeinheimGoogle Scholar
  20. Frank M (2007) Superabsorbents, Ullmann's Encyclopedia of Industrial Chemistry, Wiley, On-line Ed.Google Scholar
  21. German Advisory Council on Global Change (2003) World in transition – towards sustainable energy systems. Earthscan, London. http://www.wbgu.de/wbgu_jg2003_engl.html
  22. Government of India, Ministry of Environment and Forests (2006) 3rd National Report on Implementation of United Nations Convention to Combat Desertification, p.11. http://www.unccd.int/
  23. Hajnos M, Jozefaciuk G, Sokolowska Z, Greiffenhagen A, Wessolek G (2003) Water storage, surface, and structural properties of sandy forest humus horizons. J Plant Nutr Soil Sci 166:625–634CrossRefGoogle Scholar
  24. Henrich E, Dinjus E (2004) Das FKZ-Konzept zur Kraftstoffherstellung aus Biomasse. Fachagentur Nachwachsende Rohstoffe, Ed., Biomasse-Vergasung—Der Königsweg für eine effiziente Srom- und Kraftstoffbereitstelung? Landwirtschaftsverlag GmbH, Münster, 2004, pp 298–350Google Scholar
  25. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2008) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS 103:11206–11210CrossRefGoogle Scholar
  26. Holdren JP (2007) Energy and sustainability. Science 315:737–870PubMedCrossRefGoogle Scholar
  27. Hoogwijk M, Faaij A, Eickhout B, de Vries B, Turkenburg W (2005) Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass and Bioenergy 29:225–257CrossRefGoogle Scholar
  28. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098PubMedCrossRefGoogle Scholar
  29. Hüttermann A, Reise K, Zomorrodi M, Wang S (1997) The use of hydrogels for afforestation of difficult stands: water and salt stress. In: Zhou H, Weisgerber H (eds) Afforestation in semi-arid regions. Datong/Jinshatan, China, pp 167–177Google Scholar
  30. Hüttermann A, Zommorodi M, Reise K (1999) Addition of hydrogels to prolong the survival of Pinus halepensis seedlings subjected to drought. Soil Tillage Res 50:295–304CrossRefGoogle Scholar
  31. Hüttermann A, Hamza AS, Chet I, Majcherczyk A, Fouad T, Badr A, Cohen R, Persky L, Hadar Y (2000) Recycling of agricultural wastes by white-rot fungi for the production of fodder for ruminants. Agro Food Ind High Technol 11:29–32Google Scholar
  32. IEA (2004) Biofuels for transport: an international perspective OECD/IEA, Paris. www.iea.org/textbase/nppdf/free/2004/biofuels2004.pdf
  33. IEA (2006a) World energy outlook 2006. OECD/IEA, ParisGoogle Scholar
  34. IEA (2006b) Energy technology perspectives—scenarios & strategies to 2050. OECD/IEA, ParisGoogle Scholar
  35. IEA (2008) Energy technology perspectives 2008: scenarios and strategies to 2050. OECD/IEA, ParisGoogle Scholar
  36. IPCC (2001) (Moomaw, W et al.) Technological and economic potential of greenhouse gas emissions reduction. In: Metz B, Davidson O, Swart R, Pan J (eds) Climate change 2001—Mitigation–Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, LondonGoogle Scholar
  37. Intergovernmental Panel for Climate Change (2001) Land use, land-use change and forestry. IPCC, GenevaGoogle Scholar
  38. IPCC (2005) IPCC special report on carbon dioxide capture and storage. http://www.ipcc.ch/
  39. IPCC (2007) Climate change. Working Group I Report “The Physical Science Basis”. http://www.ipcc.ch
  40. Johnston M, Holloway T (2007) A global comparison of national biodiesel potentials. Envir Sci Technol 41:7967–7973CrossRefGoogle Scholar
  41. Kerr RA (2007) Oil resources: even oil optimists expect energy demand to outstrip supply. Science 317:437–437PubMedCrossRefGoogle Scholar
  42. Labat D, Godderis Y, Probst JL, Guyot JL (2004) Evidence for global runoff increase related to climate warming. Adv Water Res 27:631–642CrossRefGoogle Scholar
  43. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627PubMedCrossRefGoogle Scholar
  44. Lal R (2006) Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad Dev 17:197–209CrossRefGoogle Scholar
  45. Ma Q (2004) Appraisal of tree planting options to control desertification: experiences from Three-North Shelterbelt Programme. Int For Rev 6:327–334CrossRefGoogle Scholar
  46. Ma HC, Nelles-Schwelm E (2004) Application of hydrogel for vegetation recovery in dry–hot valley of Yangtse. Yunnan Science and Technology, KunmingGoogle Scholar
  47. Moreira JR (2006) Global biomass energy potential. Mitig Adapt Strategies Glob Chang 11:313–342CrossRefGoogle Scholar
  48. National Research Council (2003) The carbon dioxide dilemma, promising technologies and policies. National Academies, Washington, DC. http://www.nap.edu Google Scholar
  49. National Research Council (NRC) (2006) Trends in oil supply and demand, the potential for peaking of conventional oil production, and possible mitigation options: a summary report of the workshop, Washington, DC, 20 and 21 October 2005. National Academies, Washington, DCGoogle Scholar
  50. Neumann M (2000) Pflanzverbände und Folgewirkung—Eine ertragskundlich- betriebswirtschaftliche Betrachtung. Forstschutz-Aktuell, Wien, 25:8–10Google Scholar
  51. Olah GA, Goeppert A, Surya Prakash GK (2006) Beyond oil and gas: the methanol economy. Wiley, WeinheimGoogle Scholar
  52. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686PubMedCrossRefGoogle Scholar
  53. Piao S, Friedlingstein P, Ciais P, Noblet-Ducoudre N, Labat D, Zaehle S (2007) Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. PNAS 104:15242–15247PubMedCrossRefGoogle Scholar
  54. Plass L, Reimelt S (2007) Status und Zukunft der Biotreibstoffe. Chemie Ingenieur Technik 79:561–568CrossRefGoogle Scholar
  55. Puri S, Singh V, Bushan B, Singh S (1994) Biomass production and distribution of roots in three stands of Populus deltoids. For Ecol Manag 65:137–147CrossRefGoogle Scholar
  56. Querejeta JI, Roldan A, Albaladejo J, Castillo V (2001) For Ecol Manag 149:115–128CrossRefGoogle Scholar
  57. Schlesinger WH (1977) Carbon balance in terrestrial detritus. Annu Rev Ecol Syst 8:51–81CrossRefGoogle Scholar
  58. Shinnar R, Citro F (2006) A road map to U.S. decarbonization. Science 313:1243–1244PubMedCrossRefGoogle Scholar
  59. Singh AN, Singh JS (2006) Experiments on ecological restoration of coal mine spoil using native trees in a dry tropical environment, India: a synthesis. New Forests 31:25–39CrossRefGoogle Scholar
  60. Smeets EMW, Faaij A, Lewandowski I (2004) A quickscan of global bio-energy potentials to 2050 (Report NWS-E-2004-109, ISBN 90-393-3909-0, Utrecht)Google Scholar
  61. Smeets EMW, Faaij APC, Lewandowski IM, Turkenburg WC (2006) A bottom-up assessment and review of global bio-energy potentials to 2050. Pror Energy Combust Sci 33:56–106CrossRefGoogle Scholar
  62. Stern N (2007) The economics of climate change: the stern review. Cambridge University Press, Cambridge, p XVIGoogle Scholar
  63. UN (1992) Report of the United Nations Conference on Environment and Development, Rio de Janeiro. http://www.un.org/esa/sustdev
  64. UN (2006) Water, a shared responsibility, the United Nations World Water Development Report 2. http://www.unesco.org/water/wwap/wwdr2
  65. UNEP (2002) Global environmental outlook 3. Earthscan, London. http://www.grida.no/geo/index.htm Google Scholar
  66. Weih M (2004) Intensive short rotation forestry in boreal climates: present and future perspectives. Can J Forest Res 34:1369–1378CrossRefGoogle Scholar
  67. Williams M (2003) Deforesting the earth, from prehistory to global crisis. The University of Chicago Press, ChicagoGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Pure and Applied ChemistryCarl von Ossietzky Universität OldenburgOldenburgGermany
  2. 2.Institut für ForstbotanikUniversität GöttingenGöttingenGermany

Personalised recommendations