, Volume 96, Issue 1, pp 135–142 | Cite as

Triple tracks in CR-39 as the result of Pd–D Co-deposition: evidence of energetic neutrons

  • Pamela A. Mosier-BossEmail author
  • Stanislaw Szpak
  • Frank E. Gordon
  • Lawrence P. G. Forsley
Short Communication


Since the announcement by Fleischmann and Pons that the excess enthalpy generated in the negatively polarized Pd–D-D2O system was attributable to nuclear reactions occurring inside the Pd lattice, there have been reports of other manifestations of nuclear activities in this system. In particular, there have been reports of tritium and helium-4 production; emission of energetic particles, gamma or X-rays, and neutrons; as well as the transmutation of elements. In this communication, the results of Pd–D co-deposition experiments conducted with the cathode in close contact with CR-39, a solid-state nuclear etch detector, are reported. Among the solitary tracks due to individual energetic particles, triple tracks are observed. Microscopic examination of the bottom of the triple track pit shows that the three lobes of the track are splitting apart from a center point. The presence of three α-particle tracks outgoing from a single point is diagnostic of the 12C(n,n′)3α carbon breakup reaction and suggests that DT reactions that produce ≥9.6 MeV neutrons are occurring inside the Pd lattice. To our knowledge, this is the first report of the production of energetic (≥9.6 MeV) neutrons in the Pd–D system.


CR-39 Palladium Neutrons 



This work was funded by the SSC-Pacific ILIR program and JWK Corporation. The authors would like to thank Dr. Gary Phillips, nuclear physicist, retired Naval Research Laboratory, US Navy, Radiation Effects Branch, and Dr. Roger Boss of SSC-Pacific for valuable discussions in interpreting the data.

Supplementary material

114_2008_449_MOESM1_ESM.doc (352 kb)
ESM 1 (DOC 266 KB)


  1. Abdel-Moneim AM, Abdel-Naby A (2003) A study of fast neutron beam geometry and energy distribution using triple-α reactions. Radiat Meas 37:15–19CrossRefGoogle Scholar
  2. Aframian A (1983) Disintegration of carbon-12 with 7.1–20.1 MeV neutrons in dielectrics. J Phys G Nucl Phys 9:985–994CrossRefGoogle Scholar
  3. Al-Najjar SAR, Abdel-Naby A, Durrani SA (1986) Fast-neutron spectrometry using the triple-α reaction in the CR-39 detector. Nuclear Tracks 12:611–615Google Scholar
  4. Antolković B, Dolenec Z (1975) The neutron-induced 12C(n,n′)3α reaction at 14.4 MeV in a kinematically complete experiment. Nuclear Phys A 237:235–252CrossRefGoogle Scholar
  5. Chien C-C, Hodko D, Minevski Z, Bockris JO’M (1992) On an electrode producing massive quantities of tritium and helium. J Electroanal Chem 338:189–212CrossRefGoogle Scholar
  6. Durrani SA, Bull RK (1987) Solid state nuclear track detection. Pergamon, OxfordGoogle Scholar
  7. Frenje JA, Li CK, Séguin FH, Hicks DG, Kurebayashi S, Petrasso RD, Roberts S, Glebov VY, Meyerhofer DD, Sangster TC, Soures JM, Stoeckl C, Schmid GJ, Lerche RA (2002) Absolute measurements of neutron yields from DD and DT implosions at the OMEGA laser facility using CR-39 track detectors. Rev Sci Instrum 73:2597–2605CrossRefGoogle Scholar
  8. Jones SE, Palmer EP, Czirr JB, Decker DL, Jensen GL, Thorne JM, Taylor SF, Rafelski J (1989) Observation of cold nuclear fusion in condensed matter. Nature 338:737–740CrossRefGoogle Scholar
  9. Jones SE, Palmer EP, Czirr JB, Decker DL, Jensen GL, Thorne JM, Taylor SF, Rafelski J (1990) Anomalous nuclear reactions in condensed matter: recent results and open questions. J Nucl Fus Energy 9:199–208CrossRefGoogle Scholar
  10. Lawsen JD (1957) Some criteria for a power producing thermonuclear reactor. Proc Phys Soc B 70:6–10CrossRefGoogle Scholar
  11. Lipson AG, Lyakhov BF, Roussetski AS, Akimoto T, Mizuno T, Asami N, Shimada R, Miyashita S, Takahashi A (2000) Evidence for low-intensity D-D reactions as a result of exothermic deuterium desorption from Au/Pd/PdO:D heterostructure. Fus Technol 38:238–252Google Scholar
  12. Mizuno T, Akimoto T, Ohmori T, Takahashi A, Yamada H, Numata H (2001) Neutron evolution from a palladium electrode by alternate absorption treatment of deuterium and hydrogen. Jpn J Appl Phys 40:L989–L991CrossRefGoogle Scholar
  13. Mosier-Boss PA, Szpak S, Gordon FE, Forsley LPG (2007) Use of CR-39 in Pd–D co-deposition experiments. EPJ Appl Phys 40:293–303CrossRefGoogle Scholar
  14. Nikezic D, Yu KN (2004) Formation and growth of tracks in nuclear track materials. Mater Sci Eng R 46:51–123CrossRefGoogle Scholar
  15. Oriani RA, Fisher JC (2002) Generation of nuclear tracks during electrolysis. Jpn J Appl Phys 41:6180–6183CrossRefGoogle Scholar
  16. Packham NJC, Wolf KL, Kainthla RC, Bockris JO’M (1989) Production of tritium from D2O electrolysis at a palladium cathode. J Electroanal Chem 270:451–458CrossRefGoogle Scholar
  17. Pálfalvi JK, Szabό J, Akatov Y, Sajó-Bohus L, Eördögh I (2005) Cosmic ray studies on the ISS using SSNTD, BRADOS projects, 2001–2003. Radiat Meas 40:428–432CrossRefGoogle Scholar
  18. Phillips TW, Petrasso RD, Cable MD, Sangster TC, Hicks DG, Séguin FH, Li CK, Soures JM (1998) Charged-particle spectroscopy: a new diagnostic for inertial fusion explosions. Inertial Confinement Fusion 8:109–115Google Scholar
  19. Phillips GW, Spann JE, Bogard JS, VoDinh T, Emfietzoglou D, Devine RT, Moscovitch M (2006) Neutron spectrometry using CR-39 track etch detectors. Radiat Prot Dosim 120:457–460CrossRefGoogle Scholar
  20. Sajó-Bohus L, Pálfalvi JK, Akatov Y, Arevalo O, Greaves ED, Németh P, Palacios D, Szabό J, Eördögh I (2005) Neutron-induced complex reaction analysis with 3D nuclear track simulation. Radiat Meas 40:442–447CrossRefGoogle Scholar
  21. Séguin FH, Frenje JA, Li CK, Hicks DG, Kurebayashi S, Rygg JR, Schwartz B-E, Petrasso RD, Roberts S, Soures JM, Meyerhofer DD, Sangster TC, Knauer JP, Sorce C, Glebov VY, Stoeckl C, Phillips TW, Leeper RJ, Fletcher K, Padalino S (2003) Spectrometry of charged particles from inertial-confinement-fusion plasmas. Rev Sci Instrum 74:975–995CrossRefGoogle Scholar
  22. Srinivasan M (1991) Nuclear fusion in an atomic lattice: an update on the international status of cold fusion research. Curr Sci 60:417–439Google Scholar
  23. Szpak S, Mosier-Boss PA, Smith JJ (1996) On the behavior of the cathodically polarized Pd–D system: search for emanating radiation. Phys Lett A 210:382–390CrossRefGoogle Scholar
  24. Szpak S, Mosier-Boss PA, Boss RD, Smith JJ (1998) On the behavior of the Pd–D system: evidence for tritium production. Fus Technol 34:38–51Google Scholar
  25. Szpak S, Mosier-Boss PA, Miles M, Fleischmann M (2004) Thermal behavior of polarized Pd–D electrodes prepared by co-deposition. Thermochemica Acta 410:101–107CrossRefGoogle Scholar
  26. Szpak S, Mosier-Boss PA, Gordon FE (2007) Further evidence of nuclear reactions in the Pd–D lattice: emission of charged particles. Naturwissenschaften 94:511–514PubMedCrossRefGoogle Scholar
  27. Takahashi A (1994) Some considerations of multibody fusion in metal-deuterides. Trans Fus Technol 26(4T):451Google Scholar
  28. Takahashi A, Takeuchi T, Iida T, Watanabe M (1990) Emission of 2.45 MeV and higher energy neutrons from D2O-Pd cell under biased-pulse electrolysis. J Nucl Sci Technol 27:663–666CrossRefGoogle Scholar
  29. Yoshioka T, Tsuruta T, Iwano H, Danhara T (2005) Spontaneous fission decay constant of 238U determined by SSNTD method using CR-39 and DAP plates. Nucl Instr Meth Phys Res A 555:386–395CrossRefGoogle Scholar
  30. Ziegler JF, Biersack JP (1985) The stopping and range of ions in solids. Pergamon, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Pamela A. Mosier-Boss
    • 1
    Email author
  • Stanislaw Szpak
    • 1
  • Frank E. Gordon
    • 1
  • Lawrence P. G. Forsley
    • 2
  1. 1.SPAWAR Systems Center PacificSan DiegoUSA
  2. 2.JWK International Corp.AnnandaleUSA

Personalised recommendations