, Volume 95, Issue 12, pp 1121–1135 | Cite as

Middle-Eocene artiodactyls from Shanghuang (Jiangsu Province, Coastal China) and the diversity of basal dichobunoids in Asia

  • Grégoire Metais
  • Tao Qi
  • Jianwei Guo
  • K. Christopher Beard
Original Paper


A new assemblage of basal dichobunoid artiodactyls from the middle-Eocene Shanghuang fissure fillings includes the diacodexeid Jiangsudon shanghuangensis gen. and sp. nov., a new species of the lantianine dichobunoid Elaschitotherium, Elaschitotherium crepaturus sp. nov., and an indeterminate suoid which is presently the earliest record of this clade. Diacodexeids are also represented by two forms provisionally referred to cf. Diacodexis sp. and to an indeterminate Diacodexeidae, respectively. The occurrence of diacodexeids in Shanghuang contrasts with the early and earliest middle-Eocene chronological range of the family in Europe and North America and suggests that the stratigraphic range of the family in Asia extends up to the middle Eocene. This may reflect particular habitats in coastal China that may have been relatively stable during the early and middle Eocene, thus preserving forest-dwelling artiodactyls that became extinct in the other Holarctic regions. Compared to other supposedly coeval North American, European, and Asian faunas, the Shanghuang mammalian assemblage is most similar to early Uintan faunas of North America but is also remarkable in recording forms close to taxa that are characteristic of the Wasatchian and Bridgerian North American Land Mammal Ages. The Irdinmanhan age of the Shanghuang fauna is supported by the mammalian assemblage recovered from the fissure D, but an Arshantan age cannot be completely ruled out at this point. Although the Shanghuang assemblage is biased towards preservation of small components of the mammalian fauna, the Shanghuang fauna provide an important and unique window into the Eocene diversity and early evolution of cetartiodactyls in eastern Asia.


Cetartiodactyla Middle Eocene Shanghuang China 



We are grateful to the volunteers and researchers who have patiently sorted the tiny fossils from the immense volume of the Shanghuang matrix stored at both the IVPP (Beijing) and CM (Pittsburgh); we hope that this study contributes to make their efforts worthwhile. We are thankful to P.D. Gingerich and G.F. Gunnell (Univ. Michigan) and R.J. Emry (Smithsonian Institution) for access to collections under their care. Thanks go to Joe Suhan (University of Pittsburgh) and Mark Klingler for assistance with graphics and Xianghua Sun for help with bibliography. GM is grateful to Carol and Phil Fraley (Phil Fraley Productions, INC) and the VP Section of the Carnegie Museum for their constant support. We thank Jonathan Geisler and two other reviewers for their very useful comments. This research was supported by National Science Foundation grants SBR 9615557 and BCS 0309800 and the Singer-Polignac Foundation (Paris).


  1. Averianov A (1996) Artiodactyla from the early Eocene of Kyrgyzstan. In: Godinot M, Gingerich PD (eds) Paléobiologie et évolution des mammifères paléogènes. Palaeovertebr 25:359–369Google Scholar
  2. Bajpai S et al (2005) Early Eocene land mammals from Vastan lignite mine, District Surat (Gujarat), Western India. J Palaeontol Soc India 50(1):101–113Google Scholar
  3. Beard KC (1998) East of Eden: Asia as an important center of taxonomic origination in mammalian evolution. Bull Carnegie Mus Nat Hist 34:5–39Google Scholar
  4. Beard KC, Qi T, Dawson MR, Wang B, Li C (1994) A diverse new primate fauna from middle Eocene fissure-fillings in southeastern China. Nature 368:604–609PubMedCrossRefGoogle Scholar
  5. Chow M (1958) Eoentelodon, a new primitive entelodont from the Eocene of Lunan, Yunnan. Vertebr PalAsiatica 2:30–36Google Scholar
  6. Coombs MC, Coombs WPJ (1977) Dentition of Gobiohyus and a reevaluation of the Helohyidae (Artiodactyla). J Mammal 58:291–308CrossRefGoogle Scholar
  7. Dehm R, Oettingen-Spielberg T (1958) Paläontologische und geologische Untersuchungen im Tertiär von Pakistan. 2. Die mitteleocänen Saügetiere von Ganda Kas bei Basal in Nordwest-Pakistan. Abh Bayer Akad Wiss 91:1–54Google Scholar
  8. Dawson MR, Wang B (2001) Middle Eocene Ischyromyidae (Mammalia: Rodentia) from the Shanghuang fissures, southeastern China. Ann Carnegie Mus Nat Hist 70:221–230Google Scholar
  9. Dawson MR, Huang X, Li C, Wang B (2003) Zelomyidae, a new family of Rodentia (Mammalia) from the Eocene of Asia. Vertebr PalAsiatica 41:249–270Google Scholar
  10. Ducrocq S (1994) An Eocene peccary from Thailand and the biogeographical origins of the Artiodactyl family Tayassuidae. Palaeontol 37:765–779Google Scholar
  11. Ducrocq S, Chaimanee Y, Suteethorn V, Jaeger JJ (1998) The oldest known pig from the late Eocene of Thailand. Palaeontol 41:147–156Google Scholar
  12. Erfurt J, Sudre J (1996) Eurodexeinae, eine neue unterfamilie der Artiodactyla (Mammalia) aus dem unter- und mitteleozän Europas. In: Godinot M, Gingerich PD (eds) Paléobiologie et évolution des mammifères paléogènes. Palaeovertebr 25:371–390Google Scholar
  13. Estravis C, Russell DE (1989) Découverte d’un nouveau Diacodexis (Artiodactyla, Mammalia) dans l’Eocène inférieur de Silveirhina, Portugal. Palaeovertebr 19:29–44Google Scholar
  14. Franzen JL (1981) Das erste skelett eines Dichobuniden (Mammalia, Artiodactyla), geborgen aus mitteleozänen Ölschiefern der “Grube Messel” bei Darmstadt (Deutschland, S-Hessen). Senck leth 61:299–353Google Scholar
  15. Franzen JL (1983) Ein zweites skelett von Messelobunodon (Mammalia, Artiodactyla, Dichobunidae) aus der “Grube Messel” bei Darmstadt (Deutschland, S-Hessen). Senck leth 64:403–445Google Scholar
  16. Gabunia L (1973) On the presence of the Diacodexinae in the Eocene of Asia. Bull Acad Sci Georgian SSR 71:741–744Google Scholar
  17. Gabounia L (1977) Contribution à la connaissance des mammifères Paléogènes du bassin de Zaissan (Kazakhstan Central). Faunes de Mammifères du Paléogène d’Eurasie Geobios, Mém spéc 1:29–38Google Scholar
  18. Gazin CL (1955) A review of the Upper Eocene Artiodactyla of North America. Smithsonian Misc Coll 128:1–96Google Scholar
  19. Geisler JH, Uhen MD (2005) Phylogenetic relationships of extinct cetartiodactyls: results of simultaneous analyses of molecular, morphological, and stratigraphic data. J Mammal Evol 12:145–160CrossRefGoogle Scholar
  20. Gentry AW, Hooker JJ (1988) The phylogeny of the Artiodactyla. In: Benton MJ (ed) The phylogeny of the tetrapods. Clarendon, Oxford, pp 235–272Google Scholar
  21. Gingerich PD (1989) New earliest Wasatchian mammalian fauna from the Eocene of Northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage. Univ Mich Pap Paleontol 28:1–97Google Scholar
  22. Gingerich PD (2003) Stratigraphic and micropaleontological constraints on the middle Eocene age of the mammal-bearing Kuldana formation of Pakistan. J Vertebr Paleontol 23:643–651CrossRefGoogle Scholar
  23. Gray JE (1821) On the natural arrangement of vertebrose animals. Lond Med Repos 15:296–310Google Scholar
  24. Holroyd PA, Ciochon RL (1995) A new artiodactyl (Mammalia) from the Eocene Pondaung sandstones, Burma. Ann Carnegie Mus Nat Hist 64:177–183Google Scholar
  25. Jaeckel OMJ (1911) Die Wirbeltiere. Eine Übersicht über die fossilen und lebenden Formen. Gebrüder Bornträger, Berlin, 252 ppGoogle Scholar
  26. Kondrashov PE, Lopatin AV, Lucas SG (2004) The oldest known Asian artiodactyl (Mammalia). New Mexico Mus Nat Hist Sci Bull 26:205–208Google Scholar
  27. Krishtalka L, Stucky RK (1985) Revision of the Wind River faunas, early Eocene of Central Wyoming. Part 7. Revision of Diacodexis (Mammalia, Artiodactyla). Ann Carnegie Mus Nat Hist 54:413–486Google Scholar
  28. Krishtalka L, Stucky RK (1986) Early Eocene artiodactyls from the San Juan Basin, New Mexico, and the Piceance Basin, Colorado. In: Flanagan KM, Lillegraven JA, Benton MJ (eds) Vertebrates, phylogeny, and philosophy: contributions to geology. University of Wyoming, Laramie, pp 183–196Google Scholar
  29. Legendre S (1989) Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe Occidentale: structures, milieux et évolution. Münch Geowiss Abh (A) 16:1–100Google Scholar
  30. Leopold EB, Liu G, Clay-Poole S (1992) Low-biomass vegetation in the Oligocene? In: Prothero DR, Berggren WA (eds) Eocene and Oligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 399–420Google Scholar
  31. Li C, Ting S (1983) The paleogene mammals of China. Bull Carnegie Mus Nat Hist 21:9–93Google Scholar
  32. Liu L-P (2001) Eocene suoids (Artiodactyla, Mammalia) from Bose and Yongle basins, China, and the classification and evolution of the Paleogene suoids. Vertebr PalAsiatica 39:115–128Google Scholar
  33. Liu L-P (2003) Chinese fossil Suoidea: systematics, evolution, and paleoecology. University of Helsinki, Department of Geology, Doctoral Dissertation, Printed: ISBN 952-10-1196-3, p 41Google Scholar
  34. Martinez J-N, Sudre J (1995) The astragalus of Paleogene artiodactyls: comparative morphology, variability and prediction of body mass. Lethaia 28:197–209Google Scholar
  35. McKenna MC, Bell SK (1997) Classification of mammals above the species level. Columbia University Press, New York, 631 ppGoogle Scholar
  36. Meng J, McKenna MC (1998) Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature 394:364–367CrossRefGoogle Scholar
  37. Métais G, Guo J, Beard KC (2004) A new small dichobunid artiodactyl from Shanghuang (middle Eocene, eastern China): implications for the early evolution of proto-selenodonts in Asia. In: Dawson MR, Lillegraven JA (eds) Fanfare for an uncommon paleontologist: papers in honor of Malcom C. McKenna. Bull Carnegie Mus Nat Hist 25:177–197Google Scholar
  38. Métais G, Qi T, Guo J, Beard KC (2005) A new bunoselenodont artiodactyl from the middle Eocene of China and the early record of selenodont artiodactyls in Asia. J Vertebr Paleontol 25:994–998CrossRefGoogle Scholar
  39. Montgelard C, Catzeflis F, Douzery E (1997) Phylogenetic relationships of Artiodactyls and Cetaceans as deduced from the comparison of Cytochrome b and 12s rRNA mitochondrial sequences. Mol Biol Evol 14(5):550–559Google Scholar
  40. Prothero DR (1994) The Eocene-Oligocene transition: paradise lost. Columbia University Press, New York, 291 ppGoogle Scholar
  41. Qi T (1987) The middle Eocene Arshanto fauna (Mammalia) of inner Mongolia. Ann Carnegie Mus 56:1–73Google Scholar
  42. Qi T, Beard KC (1996) Nanotitan shanghuangensis, gen. et sp. nov.: the smallest known brontothere (Mammalia: Perissodactyla). J Vertebr Paleontol 16:578–581Google Scholar
  43. Qi T, Zong G, Wang Y (1991) Discovery of Lushilagus and Miacis in Jiangsu and its zoogeographical significance. Vertebr PalAsiatica 29:59–63Google Scholar
  44. Qi T, Beard KC, Wang B, Dawson MR, Guo J, Li C (1996) The Shanghuang mammalian fauna, Middle Eocene of Jiangsu: history of discovery and significance. Vertebr PalAsiatica 34:202–214Google Scholar
  45. Robinson P, Gunnell GF, Walsh SL, Clyde WC, Storer JE, Stucky RK, Froehlich DJ, Ferrusquía-Villafranca I, McKenna MC (2004) Wasatchian through Duchesnean biochronology. In: Woodburne MO (ed) Late Cretaceous and Cenozoic mammals of North America: biostratigraphy and geochronology. Columbia University Press, New York, pp 106–155Google Scholar
  46. Romer AS (1966) Vertebrate paleontology, 3rd edn. University of Chicago Press, Chicago, 468 ppGoogle Scholar
  47. Russell DE, Zhai RJ (1987) The Paleogene of Asia: mammals and stratigraphy. Mem Mus Nat Hist Nat 53:1–488Google Scholar
  48. Smith R, Smith T, Sudre J (1996) Diacodexis gigasei n. sp., le plus ancien Artiodactyle (Mammalia) belge, proche de la limite Paléocène-Eocène. Bull Inst Royal Sci Nat Belgique 66:177–186Google Scholar
  49. Stucky RK (1998) Eocene bunodont and bunoselenodont Artiodactyla (“dichobunids”). In: Janis CM, Scott KM, Jacobs LL (eds) Evolution of tertiary mammals of North America. Cambridge University Press, Cambridge, pp 358–374Google Scholar
  50. Sudre J (1978) Les Artiodactyles de l’Eocène moyen et supérieur d’Europe Occidentale; systématique et évolution. Mémoire EPHE, Université des Sciences et Techniques du Languedoc, Montpellier, 257 ppGoogle Scholar
  51. Sudre J, Erfurt J (1996) Les Artiodactyles du gisement Yprésien terminal de Prémontré (Aisne, France). In: Godinot M, Gingerich PD (eds) Paléobiologie et évolution des mammifères paléogènes. Palaeovertebr 25:391–414Google Scholar
  52. Sudre J, Russell DE, Louis P, Savage DE (1983) Les artiodactyles de l’Eocène inférieur d’Europe (1). Bull Mus Nat Hist Natur 5:281–333Google Scholar
  53. Sun X, Wang P (2005) How old is the Asian monsoon system?—palaeobotanical records from China. Palaeogeogr Palaeocl 222:181–222CrossRefGoogle Scholar
  54. Theodor JM, Erfurt J, Métais G (2007) The earliest artiodactyls: diacodexeidae, dichobunidae, homacodontidae, leptochoeridae and raoellidae. In: Prothero DR, Foss SE (eds) The evolution of artiodactyls. Johns Hopkins University Press, Baltimore, pp 32–58Google Scholar
  55. Thewissen JGM, Russell DE, Gingerich PD, Hussain ST (1983) A new dichobunid artiodactyl (Mammalia) from the Eocene of North–West Pakistan. P Koninklijke Nederlandse Akad Wetenschappen B 86:153–180Google Scholar
  56. Thewissen JGM, Gingerich PD, Russell DE (1987) Artiodactyla and Perissodactyla (Mammalia) from the early–middle Eocene Kuldana formation of kohat (Pakistan). Contrib Mus Paleontol Univ Michigan 27:247–274Google Scholar
  57. Thewissen JGM, Williams EM, Hussain ST (2001) Eocene mammal faunas from Northern Indo-Pakistan. J Vertebr Paleontol 21:347–366CrossRefGoogle Scholar
  58. Tong Y, Zhao Z (1986) Odoichoerus, a new suoid (Artiodactyla, Mammalia) from the Early Tertiary of Guangxi. Vertebr PalAsiatica 24:129–138Google Scholar
  59. Tong Y, Wang J (1998) A preliminary report on the early Eocene mammals of the Wutu fauna, Shandong Province, China. Bull Carnegie Mus Nat Hist 34:186–193Google Scholar
  60. Tong Y, Wang J (2006) Fossil mammals from the Early Eocene Wutu Formation of Shandong Province. Palaeontol Sin 192:1–223Google Scholar
  61. Tong Y, Zheng S, Qiu Z (1996) Evolution of Cenozoic mammalian faunal regions of China. Vertebr PalAsiatica 34:215–227Google Scholar
  62. Tsubamoto T, Takai M, Egi N (2004) Quantitative analyses of biogeography and faunal evolution of middle to late Eocene mammals in East Asia. J Vertebr Paleontol 24:657–667CrossRefGoogle Scholar
  63. Tsubamoto T, Egi N, Takai M, Sein C, Maung M (2005) Middle Eocene ungulate mammals from Myanmar: a review with description of new specimens. Acta Palaeontol Pol 50:117–138Google Scholar
  64. Turner HN (1849) On the evidences of affinity afforded by the skull in the ungulate Mammalia. Proc Zool Soc Lond 17:147–158Google Scholar
  65. von Hünermann KA (1968) Die Suidae (Mammalia, Artiodactyla) aus den Dinotheriensanden (Unterpliozän = Pons) Rheinhessens (Südwestdeutschland). Schweiz Paläontol Abh 86:1–96Google Scholar
  66. Wang B, Dawson MR (1994) A primitive cricetid (Mammalia, Rodentia) from the middle Eocene of Jiangsu Province, China. Ann Carnegie Mus Nat Hist 63:239–256Google Scholar
  67. Zachos JC, Wara MW, Bohaty SM, Delaney ML Petrizzo MR, Brill A, Bralower TJ, Premoli-Silva I (2003) A transient rise in tropical sea surface temperature during the Paleocene–Eocene thermal maximum. Science 302:551–554CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Grégoire Metais
    • 1
    • 2
  • Tao Qi
    • 3
  • Jianwei Guo
    • 3
  • K. Christopher Beard
    • 1
  1. 1.Section of Vertebrate PaleontologyCarnegie Museum of Natural HistoryPittsburghUSA
  2. 2.Paléobiodiversité et Paléoenvironnements, UMR 5143 (CNRS, MNHN, UPMC), Département Histoire de la TerreMuséum National d’Histoire NaturelleParisFrance
  3. 3.Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina

Personalised recommendations