Naturwissenschaften

, Volume 95, Issue 9, pp 845–850

The interaction of temperature and sucrose concentration on foraging preferences in bumblebees

  • Heather M. Whitney
  • Adrian Dyer
  • Lars Chittka
  • Sean A. Rands
  • Beverley J. Glover
Original Paper

Abstract

Several authors have found that flowers that are warmer than their surrounding environment have an advantage in attracting pollinators. Bumblebees will forage preferentially on warmer flowers, even if equal nutritional reward is available in cooler flowers. This raises the question of whether warmth and sucrose concentration are processed independently by bees, or whether sweetness detectors respond to higher sugar concentration as well as higher temperature. We find that bumblebees can use lower temperature as a cue to higher sucrose reward, showing that bees appear to process the two parameters strictly independently. Moreover, we demonstrate that sucrose concentration takes precedence over warmth, so that when there is a difference in sucrose concentration, bees will typically choose the sweeter feeder, even if the less sweet feeder is several degrees warmer.

Keywords

Pollination Sensory ecology Sensory integration Sweetness detection 

References

  1. Bartoshuk LM, Rennert K, Rodin J, Stevens JC (1982) Effects of temperature on the perceived sweetness of sucrose. Physiol Behav 28:905–910PubMedCrossRefGoogle Scholar
  2. Bishop JA, Armbruster WS (1999) Thermoregulatory abilities of Alaskan bees: effects of size, phylogeny and ecology. Funct Ecol 13:711–724CrossRefGoogle Scholar
  3. Blüthgen N, Fiedler K (2004) Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community. J Anim Ecol 73:155–166CrossRefGoogle Scholar
  4. Chittka L, Geiger K (1995) Honeybee long-distance orientation in a controlled environment. Ethology 99:117–126CrossRefGoogle Scholar
  5. Chittka L, Dyer AG, Bock F, Dornhaus A (2003) Bees trade off foraging speed for accuracy. Nature 424:388PubMedCrossRefGoogle Scholar
  6. Comba L, Corbet SA, Hunt H, Outram S, Parker JS, Glover BJ (2000) The role of genes influencing the corolla in pollination of Antirrhinum majus. Plant Cell Environ 23:639–647CrossRefGoogle Scholar
  7. Corbet SA (1978) Bee visits and the nectar of Echium vulgare L. and Sinapis alba L.. Ecol Entomol 3:25–27CrossRefGoogle Scholar
  8. Dyer AG, Chittka L (2004) Biological significance of discriminating between similar colours in spectrally variable illumination: bumblebees as a study case. J Comp Physiol A 190:105–114CrossRefGoogle Scholar
  9. Dyer AG, Neumeyer C (2005) Simultaneous and successive colour discrimination in the honeybee (Apis mellifera). J Comp Physiol A 191:547–557CrossRefGoogle Scholar
  10. Dyer AG, Whitney HM, Arnold SEJ, Glover BJ, Chittka L (2006) Bees associate warmth with floral colour. Nature 442:525PubMedCrossRefGoogle Scholar
  11. Génotelle J (1978) Expression de la viscosité des solutions sucrées. Ind Aliment Agric 95:747–755Google Scholar
  12. Grandi G (1961) The hymenopterous insects of the superfamily Chalcidoidea developing within the receptacles of figs. Boll Ist Entomol Univ Studi Bologna 26:1–3Google Scholar
  13. Harder LD (1986) Effects of nectar concentration and flower depth on flower handling efficiency of bumble bees. Oecologia 69:309–315CrossRefGoogle Scholar
  14. Heinrich B, Esch H (1994) Thermoregulation in bees. Am Sci 82:164–170Google Scholar
  15. Heran H (1952) Untersuchungen über den Temperatursinn der Honigbiene (Apis mellifica) unter besonderer Berücksichtigung der Wahrnehmung strahlender Wärme. Z Vgl Physiol 34:179–206CrossRefGoogle Scholar
  16. Herrera CM (1995) Floral biology, microclimate, and pollination by ectothermic bees in an early-blooming herb. Ecology 76:218–228CrossRefGoogle Scholar
  17. Kevan PG (1975) Sun-tracking solar furnaces in high Arctic flowers: significance for pollination and insects. Science 189:723–726PubMedCrossRefGoogle Scholar
  18. Kevan PG (1976) Fluorescent nectar. Science 194:341–342PubMedCrossRefGoogle Scholar
  19. Kevan PG (1989) Thermoregulation in arctic insects and flowers: Adaptation and co-adaptation in behaviour, anatomy, and physiology. In: Mercer, J (eds) Thermal physiology. Elsevier (Biomedical Division), Amsterdam, pp 747–753Google Scholar
  20. Lacher V (1964) Elektrophysiologische Untersuchungen an einzelnen Rezeptoren für Geruch, Kohlendioxyd, Luftfeuchtigkeit und Temperatur auf den Antennen der Arbeitsbiene und der Drohne (Apis mellifica L.). Z Vgl Physiol 48:587–623CrossRefGoogle Scholar
  21. Menzel R, Chittka L, Eichmüller S, Geiger K, Peitsch D, Knoll P (1990) Dominance of celestial cues over landmarks disproves map-like orientation in honey bees. Z Naturforsch 45c:723–726Google Scholar
  22. Mojet J, Köster EP, Prinz JF (2005) Do tastants have a smell. Chem Senses 30:9–21PubMedCrossRefGoogle Scholar
  23. Nieh JC, Leon A, Cameron S, Vandame R (2006) Hot bumble bees at good food: thoracic temperature of feeding Bombus wilmattae foragers is tuned to sugar concentration. J Exp Biol 209:4185–4192PubMedCrossRefGoogle Scholar
  24. Pye D (in press) To add another hue unto the rainbow—near ultraviolet in nature. Optics and Laser TechnologyGoogle Scholar
  25. Rands SA, Whitney HM (2008). Floral temperature and optimal foraging: is heat a feasible floral reward for pollinators? PLoS ONE 3(4):e2007. DOI 10.1371/journal.pone.0002007
  26. Saleh N, Scott AG, Bryning GP, Chittka L (2007) Distinguishing signals and cues: bumblebees use general footprints to generate adaptive behaviour at flowers and nest. Arthropod-Plant Interact 1:119–127CrossRefGoogle Scholar
  27. Sapir Y, Shmida A, Ne΄eman G (2006) Morning floral heat as a reward to the pollinators of the Oncocyclus irises. Oecologia 147:53–59PubMedCrossRefGoogle Scholar
  28. Schmidt VM, Schorkopf DLP, Hrncir M, Zucchi R, Barth FG (2006) Collective foraging in a stingless bee: dependence on food profitability and sequence of discovery. Anim Behav 72:1309–1317CrossRefGoogle Scholar
  29. Seeley TD (1995) The wisdom of the hive. Harvard University Press, CambridgeGoogle Scholar
  30. Seymour RS, White CR, Gibernau M (2003) Heat reward for insect pollinators. Nature 426:243–244PubMedCrossRefGoogle Scholar
  31. Stromberg MR, Johnsen PB (1990) Hummingbird sweetness preferences: taste or viscosity. Condor 92:606–612CrossRefGoogle Scholar
  32. Talavera K, Yasumatsu K, Voets T, Droogmans G, Shigemura N, Ninomiya Y, Margolskee RF, Nilius B (2005) Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438:1022–1025PubMedCrossRefGoogle Scholar
  33. von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Heather M. Whitney
    • 1
  • Adrian Dyer
    • 1
    • 2
  • Lars Chittka
    • 3
  • Sean A. Rands
    • 4
  • Beverley J. Glover
    • 1
  1. 1.Department of Plant SciencesUniversity of CambridgeCambridgeUK
  2. 2.Brain and Behaviour Research Centre, Department of PhysiologyMonash UniversityClaytonAustralia
  3. 3.School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
  4. 4.Centre for Behavioural Biology, Clinical Veterinary ScienceUniversity of BristolLangfordUK

Personalised recommendations