Naturwissenschaften

, Volume 95, Issue 9, pp 793–801

Decompression syndrome and the evolution of deep diving physiology in the Cetacea

Original Paper

Abstract

Whales repetitively dive deep to feed and should be susceptible to decompression syndrome, though they are not known to suffer the associated pathologies. Avascular osteonecrosis has been recognized as an indicator of diving habits of extinct marine amniotes. Vertebrae of 331 individual modern and 996 fossil whales were subjected to macroscopic and radiographic examination. Avascular osteonecrosis was found in the Oligocene basal odontocetes (Xenorophoidea) and in geologically younger mysticetes, such as Aglaocetus [a sister taxon to Balaenopteridae + (Balaenidae + Eschrichtiidae) clade]. These are considered as early “experiments” in repetitive deep diving, indicating that they independently converged on their similar specialized diving physiologies.

Keywords

Avascular osteonecrosis Behaviorally induced paleopathology Diving physiology Cetacea Mysticeti Odontoceti 

References

  1. Barnes LG (2006) A phylogenetic analysis of the superfamily Platanistoidea (Mammalia, Cetacea, Odontoceti). Beitr Palaont 30:25–42Google Scholar
  2. Beatty BL (2004) Evidence for suction feeding in the Desmostylidae (Desmostylia, Mammalia). J Morph 260(3):276–277, (ICVM-7 abstracts)Google Scholar
  3. Beatty BL (2007) Dental microwear as an indicator of substrate and suspended sediment interaction towards a finer view of marine mammal paleoecology. J Vertebr Paleontol 27(Supplement to 3):45AGoogle Scholar
  4. Berta A, Sumich JL (1999) Marine mammals evolutionary biology. Academic, New YorkGoogle Scholar
  5. Bouetel V (2005) Phylogenetic implications of skull structure and feeding behavior in Balaenopterids (Cetacea, Mysticeti). J Mammal 86(1):139–146CrossRefGoogle Scholar
  6. Bouetel V Muizon C (2006) The anatomy and relationships of Piscobalaena nana (Cetacea, Mysticeti), a Cetotheriidae s.s. from the early Pliocene of Peru. Geodiversitas 28(2):319–395Google Scholar
  7. Croll DA, Acevedo-Gutierrez A et al (2001) The diving behavior of blue and fin whales: is dive duration shorter than expected based on oxygen stores? Comp Biochem Physiol Part A Mol Integr Physiol 129:797–809CrossRefGoogle Scholar
  8. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  9. Dooley AC Jr., Fraser NC et al (2004) The earliest known member of the rorqual-gray whale clade (Mammalia, Cetacea). J Vertebr Paleontol 24(2):453–463CrossRefGoogle Scholar
  10. Elsner R (1999) Living in water; solutions to physiological problems. In: Reynolds JE, Rommel SA (ed) Biology of marine mammals. Smithsonian Institution Press, Washington, DC, pp 73–116Google Scholar
  11. Fernández A, Edwards JF et al (2005) “Gas and fat embolic syndrome” involving a mass stranding of beaked whales (family Ziphiidae) exposed to anthropogenic sonar signals. Vet Pathol 42:446–457PubMedCrossRefGoogle Scholar
  12. Fitzgerald EMG (2004) A review of tertiary fossil Cetacea (Mammalia) localities in Australia. Mem Natl Mus Vic 61(2):183–208Google Scholar
  13. Fitzgerald EMG (2005) Bizarre baleen whales from Australia’s Ancient Seas. Australas Sci 26(5):23–27Google Scholar
  14. Fordyce RE (1980) Whale evolution and Oligocene Southern Ocean environments. Palaeogeogr Palaeoclimatol Palaeoecol 31:319–336CrossRefGoogle Scholar
  15. Fordyce RE (1992) Cetacean evolution and Eocene/Oligocene environments. In: Prothero DR, Berggren WA (eds) Eocene–Oligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 368–381Google Scholar
  16. Fordyce RE (2003) Cetacean evolution and Eocene–Oligocene oceans revisited. In: Prothero DR, Ivany LC, Nesbitt EA (eds) From greenhouse to icehouse: the marine Eocene–Oligocene transition. Columbia University Press, New York, pp 154–170Google Scholar
  17. Fordyce RE, Muizon (2001) Evolutionary history of cetaceans: a review. In: Mazin J-M, Buffrenil (eds) Secondary adaptation of Tetrapods to life in water. Verlag Dr. Friedrich Pfeil, Munchen, pp 169–233Google Scholar
  18. Gaskin DE (1982) The ecology of whales and dolphins. Heineman, LondonGoogle Scholar
  19. Geisler JH, Sanders AE (2003) Morphological evidence for the phylogeny of Cetacea. J Mammal Evol 10(1/2):23–129CrossRefGoogle Scholar
  20. Hamilton PK, Stone GS et al (1997) Note on a deep humpback whale Megaptera novaeangliae dive near Bermuda. Bull Mar Sci 61(2):491–494Google Scholar
  21. Harvey EN, McElroy WD et al (1944) Bubble formation in animals. III. An analysis of gas tension and hydrostatic pressure in cats. J Cell Comp Physiol 24(2):117–132CrossRefGoogle Scholar
  22. Hooker SK, Baird RW (1999) Deep-diving behaviour of the Northern bottlenose whale, Hyperoodon ampullatus (Cetacea: Ziphiidae). Proc R Soc B 266(1420):671–676CrossRefGoogle Scholar
  23. Hooker SK, Miller PJO et al (2005) Ascent exhalations of Antarctic fur seals: a behavioural adaptation for breath-hold diving? Proc R Soc B 272:355–363PubMedCrossRefGoogle Scholar
  24. Houser DS, Howard R et al (2001) Can diving-induced tissue nitrogen supersaturation increase the chance of acoustically driven bubble growth in marine mammals? J Theor Biol 213:183–195PubMedCrossRefGoogle Scholar
  25. Hutter CD (2000) Dysbaric osteonecrosis: a reassessment and hypothesis. Med Hypotheses 54(4):585–590PubMedCrossRefGoogle Scholar
  26. Irving L (1935) The protection of whales from danger of Caisson disease. Science 81(2110):560–561PubMedCrossRefGoogle Scholar
  27. Jepson PD, Arbelo M et al (2003) Gas-bubble lesions in stranded cetaceans. Nature 425(6958):575–576PubMedCrossRefGoogle Scholar
  28. Jepson PD, Deaville R et al (2005) Acute and chronic gas bubble lesions in cetaceans stranded in the United Kingdom. Vet Pathol 42(3):291–305PubMedCrossRefGoogle Scholar
  29. Jones JP, Neuman TS (2003) Dysbaric osteonecrosis. In:Brubakk AO, Neuman TS (eds) Bennett and Elliott’s physiology and medicine of diving. Saunders, Edinburgh, pp. 659–679Google Scholar
  30. Kellogg R (1923) Description of an apparently new toothed cetacean from South Carolina. Smithson Misc Collect 76(7):1–7Google Scholar
  31. Kimura T, Ozawa T (2002) A new Cetothere (Cetacea: Mysticeti) from the Early Miocene of Japan. J Vertebr Paleontol 22(3):684–702CrossRefGoogle Scholar
  32. Kimura T, Okumura Y et al (2000a) An Early Miocene cetothere from the Iwamura Group, Gifu Prefecture, Japan, and its feeding mechanism. Bulletin of the Mizunami Fossil Museum 27:1–12Google Scholar
  33. Kimura T, Sakamoto O et al (2000b) A Middle Miocene cetothere from the Chichibumachi Group, central Japan. Bulletin of the Saitama Museum of Natural History 18:15–29Google Scholar
  34. Lagerquist BA, Stafford KM et al (2000) Dive characteristics of satellite-monitored blue whales (Balaenoptera musculus) off the central California coast. Mar Mammal Sci 16:375–391CrossRefGoogle Scholar
  35. Laidre KL, Heide-Jørgensen MP et al (2007) Role of the bowhead whale as a predator in West Greenland. Mar Ecol Progr Ser 346:285–297CrossRefGoogle Scholar
  36. Lindberg DR, Pyenson ND (2007) Things that go bump in the night: evolutionary interactions between cephalopods and cetaceans in the tertiary. Lethaia 40(4):335–343CrossRefGoogle Scholar
  37. Moore MJ, Early GA (2004) Cumulative sperm whale bone damage and the bends. Science 306(5705):225CrossRefGoogle Scholar
  38. Motani R, Rothschild BM (1999) Large eyeballs in diving ichthyosaurs. Nature 402:747CrossRefGoogle Scholar
  39. Murie J (1872) On the form and structure of the manatee (Manatus americanus). Trans Zool Soc Lond 8(3):127–202Google Scholar
  40. Oliver JS, Slattery PN et al (1984) Gray whale feeding on dense ampeliscid amphipod communities near Bamfield British Columbia. Can J Zool 62:41–49CrossRefGoogle Scholar
  41. Pabst DA, Rommel SA et al (1999) The functional morphology of marine mammals. In: Reynolds JE, Rommel SA (eds) Biology of marine mammals. Smithsonian Institution Press, Washington, DC, pp 15–72Google Scholar
  42. Panigada S, Zanardelli M et al (1999) How deep can baleen whales dive? Mar Ecol Progr Ser 187:309–311CrossRefGoogle Scholar
  43. Rommel SA, Caplan H (2003) Vascular adaptations for heat conservation in the tail of Florida manatees (Trichechus manatus latirostris). J Anat 202:343–353sPubMedGoogle Scholar
  44. Rommel SA, Costidis AM et al (2006) Elements of beaked whale anatomy and diving physiology and some hypothetical causes of sonar-related stranding. J Cetacean Res Manag 7(3):189–209Google Scholar
  45. Rothschild BM (1982) Rheumatology: a primary care approach. Yorke Medical Press, New YorkGoogle Scholar
  46. Rothschild BM (1987) Decompression syndrome in fossil marine turtles. Ann Carnegie Mus 56:253–258Google Scholar
  47. Rothschild BM (2005) What causes lesions in sperm whale bones? Science 308:631PubMedCrossRefGoogle Scholar
  48. Rothschild BM, Martin LD (1987) Avascular necrosis: occurrence in diving Cretaceous mosasaurs. Science 236:75–77PubMedCrossRefGoogle Scholar
  49. Rothschild BM, Martin LD (1993) Paleopathology: disease in the fossil record. CRC, LondonGoogle Scholar
  50. Rothschild BM, Martin LD (2006) Skeletal impact of disease. N M Mus Nat Hist Sci Bull 33:226Google Scholar
  51. Schreer JF, Kovacs KM (1997) Allometry of diving capacity in air-breathing vertebrates. Can J Zool 75:339–358CrossRefGoogle Scholar
  52. Thewissen JGM, Madar SI et al (1996) Ambulocetus natans, an Eocene cetacean (Mammalia) form Pakistan. Courier Forschungsinstitut Senckenberg 191:1–86Google Scholar
  53. Tyack PL, Johnson M et al (2006) Extreme diving of beaked whales. J Exp Biol 209(21):4238–4253PubMedCrossRefGoogle Scholar
  54. Uhen MD (1998) Middle to Late Eocene Basilosaurines and Dorudontines. In: Thewissen JGM (ed) The emergence of whales. Plenum, New York, pp 29–61Google Scholar
  55. Vogl AW, Fisher HD (1981) Arterial circulation of the spinal cord and brain in the monodontidae (Order cetacea). J Morphol 170(2):171–180PubMedCrossRefGoogle Scholar
  56. Werth AJ, Beatty BL et al (2007) Do odontocetes masticate? Investigating evidence from tooth wear, homodonty and enamel microstructure. J Vertebr Paleontol 27(Supplement to 3):165AGoogle Scholar
  57. Zimmer WMX, Tyack PL (2007) Repetitive shallow dives pose decompression risk in deep-diving beaked whales. Mar Mammal Sci 23(4):888–925CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.New York College of Osteopathic MedicineOld WestburyUSA
  2. 2.Division of Vertebrate PaleontologyUniversity of Kansas Natural History Museum and Biodiversity Research CenterLawrenceUSA
  3. 3.Department of AnthropologyUniversity of KansasLawrenceUSA
  4. 4.Arthritis Center NEOLawrenceUSA
  5. 5.Northeastern Ohio Universities College of MedicineRootstownUSA
  6. 6.Carnegie Museum of Natural HistoryPittsburghUSA

Personalised recommendations