, Volume 95, Issue 8, pp 751–755 | Cite as

Stenusine, an antimicrobial agent in the rove beetle genus Stenus (Coleoptera, Staphylinidae)

  • Inka Lusebrink
  • Konrad Dettner
  • Karlheinz Seifert
Short Communication


Stenusine is well known as the alkaloid, discharged by the rove beetle, genus Stenus Latreille (Coleoptera, Staphylinidae). The Stenus beetles employ the alkaloid as an escape mechanism when on water surfaces. In the case of danger, they lower their abdomen and emit stenusine from their pygidial glands. Stenusine shows a low surface tension and therefore a high spreading pressure; these properties propel the beetle quickly over the water. Many Steninae do not live in habitats with open waters, but in detritus, leaf litter, mosses, etc. This raises the possibility that stenusine might also have another function, e.g., as antibiotic or fungicide. Stenus beetles show an intense grooming behaviour. With gas chromatography–mass spectrometry analyses we could prove that they cover themselves with their secretion. To tests its antimicrobial properties we conducted agar diffusion tests with stenusine and norstenusine, another substance that is abundant in most Stenus species. Both compounds have an antimicrobial effect on entomopathogenic bacteria and fungi. Stenusine not only allows for an extraordinary method of locomotion on water surfaces, it also protects the Steninae from being infested with microorganisms.


Stenus Stenusine and norstenusine Antibiotic and fungicidal 



We thank Dr. T. Gedig for providing us with authentic stenusine and norstenusine, and we gratefully acknowledge the DFG for the funding of the project. We would also like to thank Lars Körner for the exchange of experience on Stenus beetles and Christine Loiselle for correcting the English of the manuscript. I hereby declare that all experiments comply with the current laws of Germany.


  1. Betz O (1999) A behavioural inventory of adult Stenus species (Coleoptera: Staphylinidae). J Nat Hist 33:1691–1712CrossRefGoogle Scholar
  2. Connert J (1974) Zur Strukturaufklärung des Stenusins. PhD thesis, Ruprecht-Karl-Universität, HeidelbergGoogle Scholar
  3. Dettner K (1993) Defensive secretions and exocrine glands in free-living staphylinid beetles—their bearing on phylogeny (Coleoptera: Staphylinidae). Biochem Syst Ecol 21:143–162CrossRefGoogle Scholar
  4. Frank JH (1982) The parasites of the Staphylinidae (Coleoptera). A contribution towards an encyclopedia of the Staphylinidae. University of Florida Agricultural Experimental Stations. Tech Bull 824:1–118Google Scholar
  5. Gillespie JP, Kanost MR, Trenczek T (1997) Biological mediators of insect immunity. Annu Rev Entomol 42:611–643PubMedCrossRefGoogle Scholar
  6. Gross J, Podsiadlowski L, Hilker M (2002) Antimicrobial activity of exocrine glandular secretion of Chrysomela larvae. J Chem Ecol 28:317–331PubMedCrossRefGoogle Scholar
  7. Hesse M (2000) Alkaloide—Fluch oder Segen der Natur? Wiley-VCH, WeinheimGoogle Scholar
  8. Hurst MRH, Glare TR, Jackson TA, Ronson CW (2000) Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. J Bacteriol 182:5127–5138PubMedCrossRefGoogle Scholar
  9. Kohler P (1979) Die absolute Konfiguration des Stenusins und die Aufklärung weiterer Inhaltsstoffe des Spreitungsschwimmers Stenus comma. PhD thesis, Ruprecht-Karl-Universität, HeidelbergGoogle Scholar
  10. Kovac D, Maschwitz U (1990) Secretion-grooming in aquatic beetles (Hydradephaga): a chemical protection against contamination of the hydrofuge respiratory region. Chemoecology 1:131–138CrossRefGoogle Scholar
  11. Jenkins MF (1957) The morphology and anatomy of the pygidial glands of Dianous coerulescens Gyllenhal (Coleoptera: Staphylinidae). Proc R Entomol Soc Lond A 32:159–169Google Scholar
  12. Lusebrink I, Burkhardt D, Gedig T, Dettner K, Seifert K, Mosandl A (2007) Intrageneric differences in the four stereoisomers of stenusine in the rove beetle genus, Stenus (Coleoptera, Staphylinidae). Naturwissenschaften 94:143–147PubMedCrossRefGoogle Scholar
  13. Maschwitz U (1967) Eine neuartige Form der Abwehr von Mikroorganismen bei Insekten. Naturwissenschaften 54:649PubMedCrossRefGoogle Scholar
  14. Poulsen M, Bot ANM, Nielsen MG, Boomsma JJ (2002) Experimental evidence for the costs and hygienic significance of the antibiotic metapleural gland secretion in leaf-cutting ants. Behav Ecol Sociobiol 52:151–157CrossRefGoogle Scholar
  15. Priest FG, Ebdrup L, Zahner V, Carter PE (1997) Distribution and characterization of mosquitocidal toxin genes in some strains of Bacillus sphaericus. Appl Environ Microbiol 63:1195–1198PubMedGoogle Scholar
  16. Rex JH, Pfaller MA (2002) Has antifungal susceptibility testing come of age? Clin Infect Dis 35:982–989PubMedCrossRefGoogle Scholar
  17. Römpp Lexikon (1997) In: Steglich W, Fugmann B, Lang-Fugmann S (eds) Naturstoffe. Thieme, Stuttgart, p 18Google Scholar
  18. Schildknecht H, Berger D, Krauss D, Connert J, Gehlhaus J, Essenbreis H (1976) Defense chemistry of Stenus comma (Coleoptera: Staphylinidae). LXI J Chem Ecol 2:1–11CrossRefGoogle Scholar
  19. Schlee D (1985) The ecological significance of alkaloids. In: Mothes K, Schütte HR, Luckner M (eds) Biochemistry of alkaloids. VCH Publishers, Weinheim, pp 56–62Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Inka Lusebrink
    • 1
  • Konrad Dettner
    • 1
  • Karlheinz Seifert
    • 2
  1. 1.Department of Animal Ecology IIUniversity of BayreuthBayreuthGermany
  2. 2.Department of Organic ChemistryUniversity of BayreuthBayreuthGermany

Personalised recommendations