Advertisement

Naturwissenschaften

, Volume 95, Issue 5, pp 413–425 | Cite as

Imprints from the global cosmological expansion to the local spacetime dynamics

  • Hans J. Fahr
  • Mark Siewert
Original Paper

Abstract

We study the general relativistic spacetime metrics surrounding massive cosmological objects, such as suns, stars, galaxies or galaxy clusters. The question addressed here is the transition of local, object-related spacetime metrics into the global, cosmological Robertson–Walker metrics. We demonstrate that the answer often quoted for this problem from the literature, the so-called Einstein–Straus vacuole, which connects a static outer Schwarzschild solution with the time-dependent Robertson–Walker universe, is inadequate to describe the local spacetime of a gravitationally bound system. Thus, we derive here an alternative model describing such bound systems by a metrics more closely tied to the fundamental problem of structure formation in the early universe and obtain a multitude of solutions characterising the time-dependence of a local scale parameter. As we can show, a specific solution out of this multitude is able to, as a by-product, surprisingly enough, explain the presently much discussed phenomenon of the PIONEER anomaly.

Keywords

Cosmology: theory Early universe Relativity 

References

  1. Anderson JD, Laing PA, Lau EL, Liu AS, Nieto MM, Turyshev SG (1998) Indication, from pioneer 10/11, galileo, and ulysses data, of an apparent anomalous, weak, long-range acceleration. Phys Rev Lett 81:2858CrossRefGoogle Scholar
  2. Anderson JD, Laing PA, Lau EL, Liu AS, Nieto MM, Turyshev SG (2002) Study of the anomalous acceleration of pioneer 10 and 11. Phys Rev D 65:082004 (for an updated version, see www.arxiv.org/abs/gr-qc/0104064)CrossRefGoogle Scholar
  3. Bennet CL, Halpern M, Hinshaw G, Jarosik N, Kogut A, Limon M, Meyer SS, Page L et al (2003) First-year wilkinson microwave anisotropic probe (wmap) observations: preliminary maps and basic results. Astrophys J Suppl Ser 148:1–27CrossRefGoogle Scholar
  4. Bertolami O, Paramos J (2006) Current tests of alternative gravity theories: the modified newtonian dynamics case. www.arxiv.org/abs/gr-qc/0611025
  5. Bertolami O, Paramos J (2007) A mission to test the pioneer anomaly: estimating the main systematic effects. www.arxiv.org/abs/gr-qc/0702149
  6. Bertolami O, Pedro FG, Delliou ML (2007) Dark energy-dark matter interaction and the violation of the equivalence principle from the abell cluster a586. www.arxiv.org/abs/astro-ph/0703462
  7. Blome HJ, Hoell J, Priester W (2001) Kosmologie. vol. 8 of Lehrbuch der Experimentalphysik. W. de Gruyter, BerlinGoogle Scholar
  8. Bonnor WB (1957) Jeans formula for gravitational instability. Mon Not R Astron Soc 117:104–117Google Scholar
  9. Bonnor WB, Vickers PA (1981) Junction conditions in general relativity. Gen Relativ Gravit 13:29–36Google Scholar
  10. Carrera M, Giulini D (2006) On the influence of the global cosmological expansion on the local dynamics of the solar system. www.arxiv.org/abs/gr-qc/0602098
  11. Cooperstock FI, Faraoni V, Vollick DN (1999) The influence of the cosmological expansion on local systems. Astrophys J 501:61–66Google Scholar
  12. Einstein A, Straus EG (1945) The influence of the expansion of space on the gravitation fields surrounding individual stars. Rev Mod Phys 17(2):120–124CrossRefGoogle Scholar
  13. Einstein A, Straus EG (1946) Corrections and additional remarks to our paper: the influence of the expansion of space on the gravitation fields surrounding individual stars. Rev Mod Phys 18(1):148–149CrossRefGoogle Scholar
  14. Fahr HJ, Siewert M (2006a) Does pioneer measure local spacetime expansion? www.arxiv.org/abs/gr-qc/0610034
  15. Fahr HJ, Siewert M (2006b) Kinetic study of the ion passage over the solar wind termination shock. A&A 458:13–20. doi:  10.1051/0004-6361:20065540 CrossRefGoogle Scholar
  16. Fahr HJ, Siewert M (2007) Local spacetime dynamics, the einstein–straus vacuole and the pioneer anomaly: a new access to these problems. Z Naturforsch 62a:1–10Google Scholar
  17. Goenner H (1997) Einführung in die Kosmologie. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  18. Harrison ER (1988) Cosmology: the science of the universe. Cambrigde University Press, CambridgeGoogle Scholar
  19. Masreliez CJ (2004) Scale expanding cosmos theory i—an introduction. Apeiron 11:99–133 (http://redshift.vif.com)Google Scholar
  20. Pearce FR, Jenkins A, Frenk CS, White SDM, Thomas PA, Couchman HPM, Peacock JA, Efstathiou G (2001) Simulations of galaxy formation in a cosmological volume. MNRAS 326:649–666CrossRefGoogle Scholar
  21. Petry W (2005) Further results of flat space-time theory of gravitation. Z Naturforsch 60a:255–264Google Scholar
  22. Petry W (2006) An explaination of the anomaleous doppler frequency shift of the pioneers. In: Physical Interpretations of relativity theory X, vol 13. Imperial College, London, pp 1057–1071Google Scholar
  23. Rosales JL (2002) The pioneer’s acceleration anomaly and hubble’s constant. www.arxiv.org/abs/gr-qc/0212019
  24. Rosales JL, Sanchez-Gomez JL (1999) The “pioneer effect” as a manifestation of the cosmic expansion in the solar system. www.arxiv.org/abs/gr-qc/9810085
  25. Scholz E (2007) Another look at the pioneer anomaly. www.arxiv.org/abs/astro-ph/0701032
  26. Schücking E (1954) Das schwarzschildsche linienelement und die expansion des weltalls. Z Phys 134:595–603Google Scholar
  27. Silk J, Bouwens R (2001) The formation of galaxies. New Astron Rev 45:337–350CrossRefGoogle Scholar
  28. Tomilchik LM (2007) The pioneer anomaly: the data, its meaning and a future test. www.arxiv.org/abs/0704.2745

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Argelander-Institut f. AstronomieUniversity of BonnBonnGermany

Personalised recommendations