Advertisement

Naturwissenschaften

, Volume 94, Issue 11, pp 871–894 | Cite as

A review of myrmecophily in ant nest beetles (Coleoptera: Carabidae: Paussinae): linking early observations with recent findings

  • Stefanie F. Geiselhardt
  • Klaus Peschke
  • Peter Nagel
Review

Abstract

Myrmecophily provides various examples of how social structures can be overcome to exploit vast and well-protected resources. Ant nest beetles (Paussinae) are particularly well suited for ecological and evolutionary considerations in the context of association with ants because life habits within the subfamily range from free-living and predatory in basal taxa to obligatory myrmecophily in derived Paussini. Adult Paussini are accepted in the ant society, although parasitising the colony by preying on ant brood. Host species mainly belong to the ant families Myrmicinae and Formicinae, but at least several paussine genera are not host-specific. Morphological adaptations, such as special glands and associated tufts of hair (trichomes), characterise Paussini as typical myrmecophiles and lead to two different strategical types of body shape: while certain Paussini rely on the protective type with less exposed extremities, other genera access ant colonies using glandular secretions and trichomes (symphile type). We compare these adaptations with other taxonomic groups of insects by joining contemporary research and early sources and discuss the possibility of an attracting or appeasing effect of the secretion. Species that are ignored by their host ants might use chemical mimicry instead. Furthermore, vibrational signals may contribute to ant–beetle communication, and chemical signals have proven to play a role in host finding. The powerful defense chemistry of paussines as “bombardier beetles” is not used in contact with host ants. We attempt to trace the evolution of myrmecophily in paussines by reviewing important aspects of the association between paussine beetles and ants, i.e. morphological and potential chemical adaptations, life cycle, host specificity, alimentation, parasitism and sound production.

Keywords

Evolution of myrmecophily Paussinae Mimicry Ant parasites Defensive secretion Host specificity 

Notes

Acknowledgements

We would like to thank M. E. Glyn Evans and Joachim Krüger, who kindly provided data from their laboratories. Moreover, we are grateful to Andrea di Giulio, Wendy Moore and Andreas Kaupp for fruitful discussion during the past years. Andrea di Giulio also provided the drawings of larval paussines, and Eva Weber drew the accurate pictures of adult paussines. Cesare Baroni Urbani has always been helpful with regard to any ant-related question. Furthermore, we would like to thank Sven Geiselhardt, Linda and Danel Draguljic and four anonymous reviewers for useful comments on an earlier draft of this paper.

References

  1. Akino T (2002) Chemical camouflage by myrmecophilous beetles Zyras comes (Coleoptera: Staphylinidae) and Diaritiger fossulatus (Coleoptera: Pselaphidae) to be integrated into the nest of Lasius fuliginosus (Hymenoptera: Formicidae). Chemoecology 12:83–89Google Scholar
  2. Akino T, Knapp JJ, Thomas JA, Elmes GW (1999) Chemical mimicry and host specifity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc R Soc Lond B 266:1419–1426Google Scholar
  3. Allan RA, Capon RJ, Brown WV, Elgar MA (2002) Mimicry of host cuticular hydrocarbons by salticid spider Cosmophasis bitaeniata that preys on larvae of tree ants Oecophylla smaragdina. J Chem Ecol 28:835–848PubMedGoogle Scholar
  4. Alonso Zarazaga MA (1980) Clave preliminar de las familias de coleopteros ibéricos. Graellsia 35–36:3–62Google Scholar
  5. Alpert GD (1994) A comparative study of the symbiotic relationships between beetles of the genus Cremastocheilus (Coleoptera: Scarabaeidae) and their host ants (Hymenoptera: Formicidae). Sociobiology 25:1–276Google Scholar
  6. Aneshansley DJ, Eisner T, Widom JM, Widom B (1969) Biochemistry at 100°C: explosive secretory discharge of bombardier beetles (Brachinus). Science 165:61–63PubMedGoogle Scholar
  7. Arndt E (1998) Phylogenetic investigation of Carabidae (Coleoptera) using larval characters. In: Ball GE, Casale A, Vigna Taglianti A (eds) Phylogeny and classification of caraboidea (Coleoptera: Adephaga). Atti, Museo regionale di Scienze naturali, TorinoGoogle Scholar
  8. Arndt E, Beutel RG (1994) Descriptions of the larvae of Paussus (Klugipaussus) aff. distinguendus and P. (Lineatopaussus) afzelii Westwood, 1885 (Coleoptera: Carabidae: Paussini). Elytron 8:129–139Google Scholar
  9. Arrow GJ (1931) The Paussidae, a strange group of beetles. Nat Hist 3:127–133Google Scholar
  10. Axén AH, Leimar O, Hoffman V (1996) Signalling in a mutualistic interaction. Anim Behav 52:321–333Google Scholar
  11. Ball GE, McCleve S (1990) The Middle American genera of the tribe Ozaenini with notes about the species in southwestern United States and selected species from Mexico. Quaest Entomol 26:30–116Google Scholar
  12. Ball GE, Shpeley D (1990) Synopsis of the neotropical genus Ozaena Olivier: Classification and reconstructed evolutionary history (Coleoptera: Carabidae: Ozaenini). Can Entomol 122:779–815Google Scholar
  13. Batelka J (2000) A contribution to the knowledge of the bionomics and distribution of two species of the subfamily Paussinae (Coleoptera: Carabidae) in Morocco and Tunisia. Klapalekiana 36:217–223Google Scholar
  14. Billen J, Morgan ED (1998) Pheromone communication in social insects: sources and secretions. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects. Ants, wasps, bees, and termites. Westview Press, Boulder, Colorado, pp 3–33Google Scholar
  15. Blum MS, Crewe RM, Pasteels JM (1971) Defensive secretion of Lomechusa strumosa, a myrmecophilous beetle. Ann Entomol Soc Am 64:975–976Google Scholar
  16. Bolton B (1995) A new general catalogue of the ants of the world. Harvard University Press, Cambridge, LondonGoogle Scholar
  17. Bolton B (2003) Synopsis and classification of Formicidae. Mem Am Entomol Inst 71:1–370Google Scholar
  18. Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton, NJGoogle Scholar
  19. Böving AG (1907) Om Paussiderne og Larven til Paussus Kannegieteri Wasm. Vidensk Meddelelser fra den Naturhistor Forening i Kobenhavn 6:109–136Google Scholar
  20. Brand JM, Blum MS, Fales HM, Pasteels JM (1973) The chemistry of the defensive secretion of the beetle, Drusilla canaliculata. J Insect Physiol 19:369–382Google Scholar
  21. Bronstein JL (2001) The exploitation of mutualisms. Ecol Lett 4:277–287Google Scholar
  22. Cammaerts R (1974) Le système glandulaire tégumentaire du coléoptère myrmecophile Claviger testaceus Preyssler 1790 (Pselaphidae). Z Morphol Tiere 77:187–219Google Scholar
  23. Cammaerts R, Cammaerts M-C (1992) Response of the myrmecophilous beetle Edaphopaussus favieri (Carabidae, Paussinae) to 3-ethyl-2,5-dimethylpyrazine, the only known component of its host trail pheromone. In: Billen J (ed) Biology and evolution of social insects. Leuven University Press, Leuven, pp 211–216Google Scholar
  24. Cammaerts M-C, Cammaerts R (1994) Thin-layer chromatographic isolation of the trail pheromone of the ant Pheidole pallidula. Physiol Entomol 19:258–264Google Scholar
  25. Cammaerts R, Cammaerts M-C, Detrain C (1989) Response of the myrmecophilous beetles Edaphopaussus favieri (Carabidae Paussinae) and Dichillus minutus (Tenebrionidae) to the trail of their host, Pheidole pallidula. Actes Colloq Insectes Soc 5:199–206Google Scholar
  26. Cammaerts R, Detrain C, Cammaerts M-C (1990) Host trail following by the myrmecophilous beetle Edaphopaussus favieri (Fairmaire) (Carabidae Paussinae). Insectes Soc 37:200–211Google Scholar
  27. Crozier RH, Pamilo P (1996) Evolution of social insect colonies: sex allocation and kin selection. Oxford University Press, Oxford, NYGoogle Scholar
  28. Cushing PE (1996) Myrmecomorphy and myrmecophily in spiders: a review. Fla Entomol 80:165–193Google Scholar
  29. Daniels H, Gottsberger G, Fiedler K (2005) Nutrient composition of larval nectar secretions from three species of myrmecophilous butterflies. J Chem Ecol 31:2805–2821PubMedGoogle Scholar
  30. Darlington PJ (1950) Paussid beetles. Trans Am Entomol Soc 76:47–142Google Scholar
  31. De Chaudoir M (1868) Révision du groupe des Ozénides. Ann Soc Entomol Belge 11:43–74Google Scholar
  32. Dean J, Aneshansley DJ, Edgerton HE, Eisner T (1990) Defensive spray of the bombardier beetle: a biological pulse jet. Science 248:1219–1221PubMedGoogle Scholar
  33. Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39:129–154Google Scholar
  34. D’Ettorre P, Mondy N, Lenoir A, Errard C (2002) Blending in with the crowd: social parasites integrate into their host colonies using a flexible chemical signature. Proc R Entomol Soc Lond B 269:1911–1918Google Scholar
  35. Deuve T (2001a) Le genre Eustra Schmidt-Goebel, 1846, insectes (Coleoptera, Paussidae, Ozaeninae) à genitalia femelles orthotopiques. Zoosystema 23:547–578Google Scholar
  36. Deuve T (2001b) Contribution à la connaissance des coléoptères Paussidae Ozaeninae néotropicaux. Revue française d’Entomologie 23:237–252Google Scholar
  37. Deuve T (2004) Nouveaux Ozaenini Néotropicaux (Coleoptera, Paussidae). Rev Fr Entomol NS 26:117–130Google Scholar
  38. Deuve T (2005) Nouveaux Ozaeninae (Eustrini et Ozaenini) de la Région Néotropicale et du Népal (Coleoptera, Caraboidea, Paussidae). Rev Fr Entomol NS 27:103–116Google Scholar
  39. DeVries PJ (1988) The larval ant-organs of Thisbe irenea (Lepidoptera: Riodinidae) and their effects upon attending ants. Zool J Linn Soc 94:379–393Google Scholar
  40. DeVries PJ (1991) Call production by myrmecophilous riodinid and lycaenid butterfly caterpillars (Lepidoptera): morphological, acoustical, functional, and evolutional patterns. Am Mus Novit 3052:1–23Google Scholar
  41. Dierckx F (1901) Les glandes pygidiennes des coléoptères second memoire carabides (Bombardiers, etc., Paussides, Cicindélides, Staphylinides). La Cellule 18:255–310Google Scholar
  42. DiGiulio A, Moore W (2004) The first-instar larva of the genus Arthropterus (Coleoptera: Carabidae: Paussinae): implications for evolution of myrmecophily and phylogenetic relationships within the subfamily. Invertebr Syst 18:101–115Google Scholar
  43. DiGiulio A, Vigna Taglianti A (2001) Biological observations on Pachyteles larvae (Coleoptera Carabidae Paussinae). Trop Zool 14:157–173Google Scholar
  44. DiGiulio A, Fausto AM, Taddei AR, Vigna Taglianti A (2000) The terminal disk of Pachyteles larvae (Coleoptera, Carabidae, Paussinae): a morphological study. In: Brandmayr P (ed) Natural history and applied ecology of carabid beetles. Pensoft Publishers, Sofia-Moscow, pp 89–93Google Scholar
  45. DiGiulio A, Fattorini S, Kaupp A, Vigna Taglianti A, Nagel P (2003) Review of competing hypotheses of phylogenetic relationships of Paussinae (Coleoptera: Carabidae) based on larval characters. Syst Entomol 28:509–537Google Scholar
  46. DiGiulio A, Kaupp A, Fattorini S, Vigna Taglianti A, Nagel P (2007) Pupal morphology in the subfamily Paussinae (Coleoptera: Carabidae). Rev Suisse Zool 114:33–48Google Scholar
  47. Dinter K, Paarmann W, Peschke K, Arndt E (2002) Ecological, behavioural and chemical adaptations to ant predation in species of Thermophilum and Graphipterus (Coleoptera: Carabidae) in the Sahara desert. J Arid Environ 50:267–286Google Scholar
  48. Dohrn CA (1851) Etwas über die Lebensweise einiger Paussiden. Ent Z Stettin 12:227–229Google Scholar
  49. Dumortier K (1963) Morphology of sound emission apparatus in arthropods. In: Busnel RG (ed) Acoustic behaviour of animals. Elsevier, Amsterdam, pp 277–345Google Scholar
  50. Eidmann H (1937) Die Gäste und Gastverhältnisse der Blattschneiderameise Atta sexdens L. Z Morphol Oekol Tiere 32:391–462Google Scholar
  51. Eisner T (1980) Chemistry, defense, and survival: Case studies and selected topics. In: Locke M, Smith DS (eds) Insect biology in the future. Academic, New York, pp 847–878Google Scholar
  52. Eisner T, Aneshansley DJ (1982) Spray aiming in bombardier beetles: Jet deflection by the Coanda effect. Science 215:83–85PubMedGoogle Scholar
  53. Eisner T, Aneshansley DJ (1999) Spray aiming in the bombardier beetle: Photographic evidence. Proc Natl Acad Sci USA 96:9705–9709PubMedGoogle Scholar
  54. Eisner T, Jones TH, Aneshansley DJ, Tschinkel W, Silberglied RE, Meinwald J (1977) Chemistry of defensive secretions of bombardier beetles (Brachinini, Metriini, Ozaenini, Paussini). J Insect Physiol 23:1383–1386Google Scholar
  55. Eisner T, Attygalle AB, Eisner M, Aneshansley DJ, Meinwald J (1992) Chemical defense of a primitive Australian bombardier beetle (Carabidae): Mystropomus regularis. Chemoecology 2:29–34Google Scholar
  56. Eisner T, Aneshansley DJ, Eisner M, Attygalle AB, Alsop DW, Meinwald J (2000) Spray mechanism of the most primitive bombardier beetle (Metrius contractus). J Exp Biol 203:1265–1275PubMedGoogle Scholar
  57. Eisner T, Aneshansley DJ, Yack J, Attygalle AB, Eisner M (2001a) Spray mechanism of crepidogastrine bombardier beetles (Carabidae; Crepidogastrini). Chemoecology 11:209–219Google Scholar
  58. Eisner T, Yack J, Aneshansley DJ (2001b) Acoustic concomitants of the defensive discharges of a primitive bombardier beetle (Metrius contractus). Chemoecology 11:221–223Google Scholar
  59. Escherich K (1898) Zur Anatomie und Biologie von Paussus turcicus Friv. Zool Jb Syst 12:27–70Google Scholar
  60. Escherich K (1899a) Über myrmekophile Arthropoden, mit besonderer Berücksichtigung der Biologie. Zool Zbl 6:1–8Google Scholar
  61. Escherich K (1899b) Zur Naturgeschichte von Paussus favieri Fairm. Verh Zool Bot Ges Wien 49:278–283Google Scholar
  62. Escherich K (1907) Neue Beobachtungen über Paussus in Erythrea. Z wiss Insektenbiologie 3:1–8Google Scholar
  63. Evans MEG, Forsythe TG (1985) Feeding mechanisms, and their variation in form, of some adult ground-beetles (Coleoptera: Caraboidea). J Zool Lond A 206:113–143CrossRefGoogle Scholar
  64. Fairmaire L (1903) Matériaux pour la faune coléoptérique de la région Malgache. Ann Soc Entomol Fr 72:181–259Google Scholar
  65. Fiedler K (2001) Ants that associate with Lycaeninae butterfly larvae: diversity, ecology and biogeography. Divers Distrib 7:45–60Google Scholar
  66. Fiedler K, Maschwitz U (1988) Functional analysis of the myrmecophilous relationships between ants (Hymenoptera: Formicidae) and lycaenids (Lepidoptera: Lycaeindae) II. Lycaenid larvae as trophobiotic partners of ants-a quantitative approach. Oecologia 75:204–206Google Scholar
  67. Fiedler K, Maschwitz U (1989) Functional analysis of the myrmecophilous relationships between ants (Hymenoptera: Formicidae) and Lycaenids (Lepidoptera: Lycaenidae) I. Release of food recruitment in ants by lycaenid larvae and pupae. Ethology 80:71–80CrossRefGoogle Scholar
  68. Fiedler K, Saam C (1995) Ants benefit from attending facultatively myrmecophilous Lycaenidae caterpillars: evidence from a survival study. Oecologia 104:316–322Google Scholar
  69. François P (1899) Sur les glandes pygidiennes des Brachynides (Col). Bull Soc Entomol Fr 232–235Google Scholar
  70. Freitag R, Lee SK (1972) Sound producing structures in adult Cicindela tranquebarica (Coleoptera: Cicindelidae) including a list of tiger beetles and ground beetles with flight wing files. Can Entomol 104:851–857CrossRefGoogle Scholar
  71. Geiselhardt S, Szepat T, Rasa OAE, Peschke K (2006a) Defensive secretion components of the host Parastizopus armaticeps as kairomones for the cleptoparaite Eremostibes opacus. J Chem Ecol 32:767–778PubMedGoogle Scholar
  72. Geiselhardt SF, Geiselhardt S, Peschke K (2006b) Chemical mimicry of cuticular hydrocarbons-how does Eremostibes opacus gain access to breeding burrows of its host Parastizopus armaticeps (Coleoptera, Tenebrionidae)? Chemoecology 16:59–68Google Scholar
  73. Gestro R (1892) Viaggio di Leonardo Fea in Birmania e Regioni Vicine. 46., Cenno sui Paussidi. Ann del Mus Civ di St Nat Serie 2a 12:705–709Google Scholar
  74. Giglio A, Ferrero EA, Zetto Brandmayr T (2005) Ultrastructural identification of the antennal gland complement in Siagona europaea Dejean 1826, a myrmecophagous carabid beetle. Acta Zool 86:195–203Google Scholar
  75. Gordh G, Headrick DH (2001) A dictionary of entomology. CABI Publishing, New YorkGoogle Scholar
  76. Hellmann V (1985) Ein Beitrag zur Biologie der Gattung Edaphopaussus Kolbe (Coleoptera: Paussidae). Entomol Z Insektenbörse 95:285Google Scholar
  77. Hieke F (1994) Coleoptera, Strepsiptera. Urania Tierreich. 1 ed. (Vol. Insekten) Urania-Verlagsgesellschaft mbH, Leipzig, pp 240–348Google Scholar
  78. Hoeksema JD, Bruna EM (2000) Pursuing the big questions about interspecific mutualism: a review of theoretical approaches. Oecologia 125:321–330Google Scholar
  79. Hölldobler B (1970) Zur Physiologie der Gast-Wirt-Beziehungen (Myrmecophilie) bei Ameisen. II. Das Gastverhältnis des imaginalen Atemeles pubicollis Bris. (Col. Staphylinidae) zu Myrmica und Formica (Hym. Formicidae). J Comp Physiol A 66:215–250Google Scholar
  80. Hölldobler B, Wilson EO (1977) The number of queens: an important trait in ant evolution. Naturwissenschaften 64:8–15Google Scholar
  81. Hölldobler B, Wilson EO (1990) The ants. Springer, Berlin Heidelberg New YorkGoogle Scholar
  82. Howard RW, McDaniel CA, Blomquist GJ (1980) Chemical mimicry as an integrating mechanism: cuticular hydrocarbons of a termitophile and its host. Science 210:431–433PubMedGoogle Scholar
  83. Howard RW, Akre RD, Garnett WB (1990) Chemical mimicry in an obligate predator of carpenter ants (Hymenoptera: Formicidae). Ann Entomol Soc Am 83:607–616Google Scholar
  84. Isidoro N, Romani R, Velasquez D, Renthal R, Bin F, Vinson SB (2000) Antennal glands in queen and worker of the fire ant, Solenopsis invicta Buren: first report in female social Aculeata (Hymenoptera: Formicidae). Insectes Soc 47:236–240Google Scholar
  85. Janssen E, Übler E, Bauriegel L, Kern F, Bestmann HJ, Attygalle AB, Steghaus-Kovac S, Maschwitz U (1997) Trail pheromone of the ponerine ant Leptogenys peuqueti (Hymenoptera: Formicidae): a multicomponent mixture of related compounds pheromones. Naturwissenschaften 84:122–125Google Scholar
  86. Kaltenpoth M, Göttler W, Herzner G, Strohm E (2005) Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol 15:475–479PubMedGoogle Scholar
  87. Karny HH (1923) Ueber Cerapterus horsfieldi (Col. Pauss.). Treubia 3:188Google Scholar
  88. Kaupp A, Rödel M-O (1996) Die Fühlerkäfer der Elfenbeinküste, Faunistik und Phänologie. Koleopterol Rundsch 66:7–17Google Scholar
  89. Kaupp A, Guggenheim R, Nagel P (2000a) Egg-shell structure of Paussinae and other Carabidae, with notes on its phylogenetic relevance (Coleoptera). In: Brandmayr P (ed) Natural history and applied ecology of carabid beetles. Pensoft Publishers, Sofia-Moscow, pp 111–122Google Scholar
  90. Kaupp A, Guggenheim R, Nagel P (2000b) Die Eischale als Gegenstand der phylogenetischen Forschung bei Paussinae und anderen Carabidae (Coleoptera: Adephaga). Entomol Basil 22:149–154Google Scholar
  91. Keller C (1892) Neue Beobachtungen über Symbiose zwischen Ameisen und Akazien. Zool Anz 15:137–140Google Scholar
  92. Kistner DH (1982) The social insects’ bestiary. In: Hermann HR (ed) Social insects, vol. 3. Academic, New York, pp 1–244Google Scholar
  93. Kistner DH (1993) Cladistic analysis, taxonomic restructuring and revision of the old-world genera formerly classified as Dorylomimini with comments on their evolution and behavior (Coleoptera, Staphylinidae). Sociobiology 22:151–374Google Scholar
  94. Kohl E, Hölldobler B, Bestmann H-J (2003) Trail pheromones and Dufour gland contents in three Camponotus species (C. castaneus, C. balzani, C. sericeiventris: Formicidae: Hymenoptera). Chemoecology 13:113–122Google Scholar
  95. Lacordaire T (1833) Essai sur les coléoptères de la Guyane Francaise. Nouv Ann Mus Hist Nat Tome 10:35–94Google Scholar
  96. Larochelle A, Larivière M-C (2003) A natural history of the ground-beetles (Coleoptera: Carabidae) of America North of Mexico. Pensoft Publishers, Sofia, MoscowGoogle Scholar
  97. Le Masne G (1961a) Observations sur le comportement de Paussus favieri Fairm., hôte de la fourmi Pheidole pallidula Nyl. Ann Fac Sci Marseille 31:111–130Google Scholar
  98. Le Masne G (1961b) Recherches sur la biologie des animaux myrmécophiles I: L’adoption des Paussus favieri Fairm. par une nouvelle société de Pheidole pallidula Nyl. C R Hebd Séances Acad Sci 253:1621–1623Google Scholar
  99. Le Masne G (1961c) Recherches sur la biologie des animaux myrmécophiles: Observations sur le régime alimentaire de Paussus favieri Fairm., hôte de la fourmi Pheidole pallidula Nyl. C R Hebd Séances Acad Sci 253:1356–1357Google Scholar
  100. Lea AM (1910) Australian and Tasmanian Coleoptera inhabiting or resorting to the nests of ants, bees and termites. Proc R Soc Victoria NS 23:116–230Google Scholar
  101. Leimar O, Axén AH (1993) Strategic behaviour in an interspecific mutualism: interactions between lycaenid larvae and ants. Anim Behav 46:1177–1182Google Scholar
  102. Lenoir A, D’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599PubMedGoogle Scholar
  103. Leston D (1978) Seasonality and the flight of Paussids (Coleoptera) in West Africa. Psyche 84:210–217CrossRefGoogle Scholar
  104. Liang D, Silverman J (2000) “You are what you eat”: diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87:412–416PubMedGoogle Scholar
  105. Loman JCC (1887) Freies Jod als Drüsensecret. Tijdschr Ned Dierkd Ver 1:106–108Google Scholar
  106. Lorenz W (2005) A systematic list of extant ground beetles of the world (Coleoptera “Geadephaga”: Trachypachidae and Carabidae incl. Paussinae, Cicindelinae, Rhysodinae), TutzingGoogle Scholar
  107. Luna de Carvalho E (1949) Estudos sobre a familia Paussidae Latreille (Col. Carab. Isochaeta). Mem Estud Mus Zool Univ Coimbra 193:1–9Google Scholar
  108. Luna de Carvalho E (1951) Contribution pour un nouveau catalogue de la famille des Paussides (Col. Carab. Isochaeta). Mem Estud Mus Zool Univ Coimbra 207:1–51Google Scholar
  109. Luna de Carvalho E (1959) Notas sobre Paussídeos (Col. Carab. Isochaeta). Museu do Dundo, Subsídios para o estudo da biologia na Lunda. (Publicacoes culturais da Companhia de Diamantes de Angola) 48:47–90Google Scholar
  110. Luna de Carvalho E (1966) Paussid beetles in the Carnegie Museum (Coleoptera, Carabidae). 12th Contribution to a Monographic Study of the Paussinae. Ann Carnegie Mus 38:129–134Google Scholar
  111. Luna de Carvalho E (1977a) Coléoptères Paussides du Muséum d´ Histoire naturelle de Genéve, 1re note (32e contribution à l´étude monographique des Paussides). Rev Suisse Zool 84:81–101PubMedGoogle Scholar
  112. Luna de Carvalho E (1977b) Are there termitophilous paussid beetles? (Coleoptera Carabidae Paussinae). 37th Contribution to a monographic study of the Paussidae. Sociobiology 3:67–70Google Scholar
  113. Luna de Carvalho E (1989) Essai monographique des Coléoptères Protopaussines et Paussines. Mem Inst Invest Cient Trop 70:1–1028Google Scholar
  114. Luna de Carvalho E (1992) Revisao do estudio das larvas de Carabideos Paussinae e de subfamilias affinis. Elytron 5:285–310Google Scholar
  115. MacLeay WS (1838) Illustrations of the annulosa of South Africa. Smith, Elder and Co., LondonGoogle Scholar
  116. McIver JD, Stonedal G (1993) Myrmecomorphy: morphological and behavioral mimicry in ants. Annu Rev Entomol 38:351–379Google Scholar
  117. Moore W, DiGiulio A (2006) Description and behaviour of Goniotropis kuntzeni larvae (Coleoptera: Carabidae: Paussinae: Ozaeninae) and a key to the genera of Paussinae larvae. Zootaxa 1111:1–19Google Scholar
  118. Moore BP, Wallbank BE (1968) Chemical composition of the defensive secretion in carabid beetles and its importance as a taxonomic character. Proc R Ent Soc Lond B 37:62–72Google Scholar
  119. Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006) Phylogeny of the ants: Diversification in the age of angiosperms. Science 312:101–104PubMedGoogle Scholar
  120. Murria F (1994) Familia: Paussidae. Catalogus de la Entomofauna Aragonense 4:8Google Scholar
  121. Nagel P (1979) Aspects of the evolution of myrmecophilous adaptations in Paussinae (Coleoptera: Carabidae). Misc Pap Agric Univ Wageningen 18:15–34Google Scholar
  122. Nagel P (1983) Notes sur quelques Paussines africains (Coleoptera, Carabidae). Rev Fr Entomol NS 5:29–33Google Scholar
  123. Nagel P (1986a) Die Methode der Arealsystemanalyse als Beitrag zur Rekonstruktion der Landschaftsgenese im tropischen Afrika. Geomethodica 11:145–176Google Scholar
  124. Nagel P (1986b) Revision der Paussus laevifrons-Gruppe (Coleoptera, Carabidae, Paussinae). Zool Jb Syst 113:141–201Google Scholar
  125. Nagel P (1987a) Arealsystemanalyse afrikanischer Fühlerkäfer (Coleoptera, Carabidae, Paussinae), vol. 21. Franz Steiner Verlag Wiesbaden GmbH, StuttgartGoogle Scholar
  126. Nagel P (1987b) Fossil ant nest beetles (Coleoptera, Carabidae, Paussinae). Entomol Arb Mus G Frey 35/36:137–170Google Scholar
  127. Nagel P (1997) New fossil paussids from Dominican amber with notes on the phylogenetic systematics of the paussine complex (Coleoptera: Carabidae). Syst Entomol 22:345–362Google Scholar
  128. Nagel P (2003) Carabidae: Paussinae. In: Löbl I, Smetana A (eds) Catalogue of palaearctic Coleoptera, vol. 1. Apollo Books, Stenstrup, pp 19, 208–211Google Scholar
  129. Nagel P (2004) Les coléoptères Carabidae: Paussinae de la forêt de la Lama. Opusc Biogeogr Basileensia 3/2003:26–27Google Scholar
  130. Nagel P (2006) Ant nest beetles of the Carnegie Museum (Coleoptera, Carabidae, Paussinae, Paussini). Ann Carnegie Mus 75:181–202Google Scholar
  131. Noirot C, Quennedey A (1974) Fine structure of insect epidermal glands. Annu Rev Entomol 19:61–80Google Scholar
  132. Noirot C, Quennedey A (1991) Glands, gland cells, glandular units: some comments on terminology and classification. Ann Soc Entomol Fr NS 27:123–128Google Scholar
  133. Orivel J, Servigne P, Cerdan P, Dejean A, Corbara B (2004) The ladybird Thalassa saginata, an obligatory myrmecophile of Dolichoderus bidens ant colonies. Naturwissenschaften 91:97–100PubMedGoogle Scholar
  134. Päivinen J, Ahlroth P, Kaitala V (2002) Ant-associated beetles of Fennoscandia and Denmark. Entomol Fenn 13:20–40Google Scholar
  135. Paulian R (1988) Biologie des Coléoptères. Éditions Lechevalier, ParisGoogle Scholar
  136. Péringuey L (1883) Notes on three Paussi. Trans ent Soc Lond 2:133–138Google Scholar
  137. Péringuey L (1886) Notes on some coleopterous insects of the family Paussidae. Proc Entomol Soc Lond:XXXIV–XXXVIIGoogle Scholar
  138. Peschke K, Metzler M (1982) Defensive and pheromonal secretion of the tergal gland of Aleochara curtula I. The chemical composition. J Chem Ecol 8:773–783Google Scholar
  139. Peschke K, Schmitt K, Zinner K (1986) Occurrence of electronically excited products during the defensive reaction of bombardier beetles. Photobiochem Photobiophys 12:275–282Google Scholar
  140. Philips TK (2000) Phylogenetic analysis of the New World Ptininae (Coleoptera: Bostrichoidea). Syst Entomol 25:235–262Google Scholar
  141. Philips TK, Edmonds WD, Scholtz CH (2004) A phylogenetic analysis of the New World tribe Phanaeini (Coleoptera: Scarabaeidae: Scarabaeinae): hypotheses on relationships and origins. Insect Syst Evol 35:43–63Google Scholar
  142. Pierce NE, Young WR (1986) Lycaenid butterflies and ants: Two-species stable equilibria in mutualistic, commensal, and parasitic interactions. Am Nat 128:216–227Google Scholar
  143. Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, Travassos MA (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771PubMedGoogle Scholar
  144. Poinar GO (1992) Life in Amber. Stanford University Press, StanfordGoogle Scholar
  145. Quinet Y, Pasteels JM (1995) Trail following and stowaway behaviour of the myrmecophilous staphylinid beetle, Homoeusa acuminata, during foraging trips of its host Lasius fuliginosus (Hymenoptera: Formicidae). Insect Soc 42:31–44Google Scholar
  146. Raffray A (1886) Matériaux pour servir à l’étude des coléoptères de la famille des Paussides. Nouv Arch Mus Hist Nat 2:1–52Google Scholar
  147. Raffray A (1892) Recherches anatomiques sur le Pentaplatarthrus paussoides Coléoptère de la famille des Paussides. Nouv Arch Mus Paris 3:91–102Google Scholar
  148. Rasa OAE (1996) Interspecific association in desert tenebrionid beetles: a cleptoparasite does not affect the host’s reproductive success, but that of its offspring. Naturwissenschaften 83:575–577Google Scholar
  149. Reichensperger A (1924) Neue südamerikanische Histeriden als Gäste von Wanderameisen und Termiten II. Teil. Rev Suisse Zool 31:117–152Google Scholar
  150. Reichensperger A (1948) Die Paussiden Afrikas. Abh d senck naturf Ges 479:5–31Google Scholar
  151. Resh VH, Cardé RT (eds) (2003) Encyclopedia of insects. Academic, LondonGoogle Scholar
  152. Roach B, Dodge KR, Aneshansley DJ, Wiemer D, Meinwald J, Eisner T (1979) Chemistry of defensive secretions of Ozaenine and Paussine Bombardier beetles (Coleoptera: Carabidae). Coleopt Bull 33:17–20Google Scholar
  153. Roces F, Tautz J (2001) Ants are deaf. JASA 109:3080Google Scholar
  154. Rosenhauer WG (1856) Die Thiere Andalusiens nach dem Resultate einer Reise zusammengestellt, nebst den Beschreibungen von 249 neuen oder bis jetzt noch unbeschriebenen Gattungen und Arten. Theodor Blaesing, ErlangenGoogle Scholar
  155. Schildknecht H, Koob K (1969) Zur Explosionschemie der Bombardierkäfer. Naturwissenschaften 56:328PubMedGoogle Scholar
  156. Schildknecht H, Maschwitz E, Maschwitz U (1968a) Die Explosionschemie der Bombardierkäfer. II. Mitt.: Isolierung und Charakterisierung der Explosionskatalysatoren. XXXIV. Mitteilung über Arthropodenwehrstoffe. Z Naturforsch 236:1213–1218Google Scholar
  157. Schildknecht H, Maschwitz U, Winkler H (1968b) Zur Evolution der Carabiden-Wehrdrüsensekrete. Naturwissenschaften 55:112–117PubMedGoogle Scholar
  158. Schlick-Steiner BC, Steiner FM, Höttinger H, Nikiforov A, Mistrik R, Schafellner C, Baier P, Christian E (2004) A butterfly’s chemical key to various ant forts: intersection-odour or aggregate-odour multi-host mimicry? Naturwissenschaften 91:209–214PubMedGoogle Scholar
  159. Schönrogge K, Wardlaw JC, Peters AJ, Everett S, Thomas JA, Elmes GW (2004) Changes in chemical signature and host specificity from larval retrieval to full social integration in the myrmecophilous butterfly Maculinea rebeli. J Chem Ecol 30:91–107PubMedGoogle Scholar
  160. Singer TL (1998) Roles of hydrocarbons in the recognition systems of insects. Am Zool 38:394–405Google Scholar
  161. Sloane TG (1933) Notes on the Australian species of the family Paussidae (Coleoptera). Proc Linn Soc N S W 58:396–404Google Scholar
  162. Solorzano Kraemer M (2006) The first fossil paussine (Coleoptera: Carabidae) from Mexican amber. Palaontol Z 80:107–111Google Scholar
  163. Soroker V, Lucas C, Simon T, Fresneau D, Durand JL, Hefetz A (2003) Hydrocarbon distribution and colony odour homogenisation in Pachycondyla apicalis. Insectes Soc 50:212–217Google Scholar
  164. Stadler B, Dixon AFG (1999) Ant anttendance in aphids: why different degrees of myrmecophily? Ecol Entomol 24:363–369Google Scholar
  165. Steidle JLM, Dettner K (1993) Chemistry and morphology of the tergal gland of freeliving adult Aleocharinae (Coleoptera: Staphylinidae) and its phylogenetic significance. Syst Entomol 18:149–168Google Scholar
  166. Stork NE (1985) Dhanya, a south-east Asian genus of ozaenine ground beetles. J Nat Hist 19:1113–1138Google Scholar
  167. Stowe MK (1988) Chemical mimicry. In: Spencer KC (ed) Chemical mediation of coevolution. Academic Press, San Diego, pp 513–580Google Scholar
  168. Taniguchi K, Maruyama M, Ichikawa T, Ito F (2005) A case of Batesian mimicry between a myrmecophilous staphylinid beetle, Pella comes, and its host ant, Lasius (Dendrolasius) spathepus: an experiment using the Japanese treefrog, Hyla japonica as a real predator. Insectes Soc 52:320–322Google Scholar
  169. Thiele H-U (1977) Carabid beetles in their environments. A study on habitat selection by adaptations in physiology and behaviour. Springer, Berlin Heidelberg New YorkGoogle Scholar
  170. Travassos MA, Pierce NE (2000) Acoustics, context and function of vibrational signalling in a lycaenid butterfly-ant mutualism. Anim Behav 60:13–26PubMedGoogle Scholar
  171. Van Emden F (1922) Über die Larven der Paussiden und Beschreibung der Larve des Paussus granulatus Westw. (Col.). Ent Blätter 18:37–47Google Scholar
  172. Van Emden F (1936) Eine interessante, zwischen Carabidae und Paussidae vermittelnde Käferlarve. Arb Phys Angew Ent 3:250–256Google Scholar
  173. Van Emden F, Wasmann E (1925) Paussidae. In: Blunck H (ed) Verlag von Gebrüder Bornträger, Berlin. Syllabus der Insektenbiologie Coleopteren:40–43Google Scholar
  174. Vander Meer RK, Wojcik DP (1982) Chemical mimicry in the myrmecophilous beetle Myrmecaphodius excavaticollis. Science 218:806–808PubMedGoogle Scholar
  175. Vander Meer RK, Jouvenaz DP, Wojcik DP (1989) Chemical mimicry in a parasitoid (Hymenoptera: Eucharitidae) of fire ants (Hymenoptera: Formicidae). J Chem Ecol 15:2247–2261Google Scholar
  176. Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) (1998) Pheromone communication in social insects. Ants, wasps, bees, and termites. Westview Press, Boulder, ColoradoGoogle Scholar
  177. Vigna Taglianti A, Santarelli F, DiGiulio A, Oliverio M (1998) Phylogenetic implications of larval morphology in the tribe Ozaenini (Coleoptera: Carabidae). In: Ball GE, Casale A, Vigna Taglianti A (eds) Phylogeny and Classification of Caraboidea (Coleoptera: Adephaga). Atti, Museo regionale di Scienze naturali, TorinoGoogle Scholar
  178. Wagner T (2000) Diversity and distribution patterns of beetles in different forest types in the Budongo Forest reserve, Uganda. Biotropica 32:502–514Google Scholar
  179. Wappler T (2003) Systematik, Phylogenie, Taphonomie und Paläoökologie der Insekten aus dem Mittel-Eozän des Eckfelder Maares, Vulkaneifel. Clausthal-ZellerfeldGoogle Scholar
  180. Wardlaw JC, Thomas JA, Elmes GW (2000) Do Maculinea rebeli caterpillars provide vestigial mutualistic benefits to ants when living as social parasites inside Myrmica ant nests? Entomol Exp Appl 95:97–103Google Scholar
  181. Wasmann E (1890) Ameisengäste und Termitengäste. Tijdschr Entomol 33:27–97Google Scholar
  182. Wasmann E (1892) Ein neuer Paussus vom Somaliland. Mitt Schweiz Entomol Ges 8:355–357Google Scholar
  183. Wasmann E (1894) Kritisches Verzeichnis der myrmekophilen und termitophilen Arthropoden mit Angabe der Lebensweise und mit Beschreibung neuer Arten. Verlag von Felix L. Dames, BerlinGoogle Scholar
  184. Wasmann E (1896) Die Myrmekophilen und Termitophilen. In: Hoek PPC (ed) Société Néeriandaise de Zoologie, Leyden. Compte-rendu des séances du troisième congrès international de Zoologie:410–440Google Scholar
  185. Wasmann E (1898) Die Gäste der Ameisen und Termiten. Illustrierte Zeitschrift für Entomologie 3:145–247Google Scholar
  186. Wasmann E (1903) Zur näheren Kenntnis des echten Gastverhältnisses (Symphilie) bei den Ameisen- und Termitengästen. Biol Zbl 23:63–72, 232–248, 298–310Google Scholar
  187. Wasmann E (1904) Neue Beiträge zur Kenntnis der Paussiden, mit biologischen und phylogenetischen Bemerkungen. Notes Leyden Mus 25:1–82Google Scholar
  188. Wasmann E (1906) Die moderne Biologie und die Entwicklungstheorie, 3rd edn. Herdersche Verlagshandlung, FreiburgGoogle Scholar
  189. Wasmann E (1910) Zur Kenntnis der Gattung Pleuropterus und anderer Paussiden. Ann Soc Entomol Belge 54:392–402Google Scholar
  190. Wasmann E (1911) Ein neuer Paussus aus Ceylon, mit einer Übersicht über die Paussidenwirte. Tijdschr Entomol 54:195–207Google Scholar
  191. Wasmann E (1913) The ants and their guests. Smithson Rep 1912:455–474Google Scholar
  192. Wasmann E (1915) Eine neue Pseudomyrma aus der Ochsenhorndornakazie in Mexiko, mit Bemerkungen über Ameisen in Akaziendornen und ihre Gäste. Tijdschr Entomol 58:296–325Google Scholar
  193. Wasmann E (1918a) Über Pleuropterus dohrni Rits. und lujae Wasm. und die Larve von Pleuropterus dohrni. Tijdschr Entomol 61:76–87Google Scholar
  194. Wasmann E (1918b) Myrmekophile und termitophile Koleopteren aus Ostindien, gesammelt hauptsächlich von P.J. Assmuth, S.J. und J.B. Corporaal. I. Paussidae und Clavigeridae. Tijdschr Entomol 60:382–408Google Scholar
  195. Wasmann E (1920) Die Gastpflege der Ameisen: ihre biologischen und philosophischen Probleme. Abh Theor Biol 4:1–105Google Scholar
  196. Wasmann E (1925) Die Ameisenmimikry: Ein exakter Beitrag zum Mimikryproblem und zur Theorie der Anpassung. Abh Theor Biol 19:1–154Google Scholar
  197. Wasmann E (1929) Die Paussiden des baltischen Bernsteins und die Stammesgeschichte der Paussiden. 270. Beitrag zur Kenntnis der Myrmecophilen. Bernsteinforschungen 1:1–110Google Scholar
  198. Wasmann E (1934) Die Ameisen, die Termiten und ihre Gäste: Vergleichende Bilder aus dem Seelenleben von Mensch und Tier. Verlagsanstalt vorm. G. J. Manz A.G., RegensburgGoogle Scholar
  199. Wasmann E, Brauns H (1925) New genera and species of South African myrmecophilous and termitophilous beetles. S Afr J Nat Hist 5:101–118Google Scholar
  200. Weis A, Schönitzer K, Melzer RR (1999) Exocrine glands in the antennae of the carabid beetle, Platynus assimilis (Paykull) 1790 (Coleoptera, Carabidae, Pterostichinae). Int J Insect Morphol Embryol 28:331–335Google Scholar
  201. Weitschat W, Wichard W (2002) Atlas of plants and animals in Baltic Amber. Verlag Dr. Friedrich Pfeil, MünchenGoogle Scholar
  202. Westwood JO (1833) X X X I V. On the Paussidae, a family of coleopterous insects. Trans Linn Soc Lond 16:607–684Google Scholar
  203. Westwood JO (1874) Order-Coleoptera. Section-Pentamera. Family-Paussidae. In: Westwood JO (ed) Thesaurus entomologicus oxoniensis. Oxford University Press, Oxford, pp 72–96Google Scholar
  204. Wheeler WM (1960) Ants—their structure, development and behavior. Columbia University Press, New YorkGoogle Scholar
  205. Wilson EO (1971) The insect societies. The Belknap Press of Harvard University Press, Cambridge, MAGoogle Scholar
  206. Yung CM (1938) Morphologische und histologische Studien über Paussidendrüsen. Zool Jb Anat 64:287–346Google Scholar
  207. Zetto Brandmayr T, Bonacci T, Dalpozzo R, De Nino A, Tagarelli A, Talarico FF, Brandmayr P (2005) Cuticular hydrocarbon profiles of some ground beetle species (Coleoptera, Carabidae) and their possible role in predatory and antipredatory adaptation. DIAS Report 114:41–48Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Stefanie F. Geiselhardt
    • 1
  • Klaus Peschke
    • 1
  • Peter Nagel
    • 2
  1. 1.Institut für Biologie IAlbert-Ludwigs-Universität FreiburgFreiburgGermany
  2. 2.Institut für Biogeographie, Departement UmweltwissenschaftenUniversität BaselBaselSwitzerland

Personalised recommendations