, Volume 94, Issue 9, pp 769–778 | Cite as

Cranial pneumatization and auditory perceptions of the oviraptorid dinosaur Conchoraptor gracilis (Theropoda, Maniraptora) from the Late Cretaceous of Mongolia

  • Martin KundrátEmail author
  • Jiří Janáček
Original Paper


The distribution of air-filled structures in the craniofacial and neurocranial bones of the oviraptorid ZPAL MgD-I/95, discovered at the Hermiin Tsav locality, Mongolia, is restored. Based on the complete obliteration of most of the cranial sutures, the specimen is identified as an adult individual of Conchoraptor gracilis Barsbold 1986. Except for the orbitosphenoids and epipterygoids, the preserved bones of the neurocranium are hollow. Three types of tympanic recess are present in Conchoraptor, a characteristic shared with troodontids, dromaeosaurids, and avian theropods. The contralateral middle ear cavities are interconnected by the supraencephalic pathway that passes through the dorsal tympanic recesses, the posterodorsal prootic sinuses and the parietal sinus. The spatial arrangements of the middle ear cavity and a derived neurocranial pneumatic system in Conchoraptor indicate enhancements of acoustic perception in the lower-frequency registers and of auditory directionality. We further speculate that this improvement of binaural hearing could be explained as an adaptation required for accurate detection of prey and/or predators under conditions of low illumination. The other potentially pneumatic structures of the Conchoraptor cranium include (1) recessus-like irregularities on the dorsal surface of the nasal and frontal bones (a putative oviraptorid synapomorphy; pos); (2) a subotic recess; (3) a sub-condylar recess; and (4) a posterior condylar recess (pos).


Theropoda Oviraptorosauria Conchoraptor Neurocranium Pneumatic sinus Acoustic perceptions Binaural hearing Directionality 



The authors thank Ole N. Larsen, Gareth Dyke, and Kevin Padian for reading and commenting on an earlier version of this manuscript, Gerald Mayr for his valuable editing and editorial comments, and Randy and Deb Lyons for their rigorous edit of the final version of the manuscript. Our special thanks to Halszka Osmólska and Teresa Maryańska for providing access to the fossil specimen and Zdeněk Seidl and Vladimír Smékal for providing access to the CT facility.

Supplementary material

114_2007_258_Fig1_ESM.jpg (408 kb)
Supplementary Fig. S1

Transversal CT-scan sections through the rostral part of the skull of Conchoraptor gracilis, ZPAL MgD-I/95 (JPG 662 kb)

114_2007_258_Fig2a_ESM.jpg (292 kb)
Supplementary Fig. S2

Transversal CT-scan sections through the anterior neurocranium of Conchoraptor gracilis, ZPAL MgD-I/95 (a)(JPG 436 kb) (b)(JPG 327 kb)

114_2007_258_Fig2b_ESM.jpg (251 kb)
Supplementary Fig. S2

Transversal CT-scan sections through the anterior neurocranium of Conchoraptor gracilis, ZPAL MgD-I/95 (a)(JPG 436 kb) (b)(JPG 327 kb)

114_2007_258_Fig3a_ESM.jpg (375 kb)
Supplementary Fig. S3

Transveral CT-scan sections through the posterior neurocranium of Conchoraptor gracilis, ZPAL MgD-I/95 (a)(JPG 578 kb) (b)(JPG 330 kb)

114_2007_258_Fig3b_ESM.jpg (254 kb)
Supplementary Fig. S3

Transveral CT-scan sections through the posterior neurocranium of Conchoraptor gracilis, ZPAL MgD-I/95 (a)(JPG 578 kb) (b)(JPG 330 kb)


  1. Barsbold R (1974) Saurornithoididae, a new family of small theropod dinosaurs from Central Asia and North America. Palaeontol Pol 30:5–22Google Scholar
  2. Barsbold R (1986) Raubdinosaurier Oviraptoren. In: Vorobyeva EI (ed) Gerpetologičeskie issledovaniâ v Mongol’skoi Narodnoj Respublike, Institut Evolyucionnoy Morfologii i Ekologii Zhivotnikh im. A. N. Severcova, Akademia Nauk SSSR, Moscow, pp 210–223Google Scholar
  3. Barsbold R, Osmólska H (1999) The skull of Velociraptor (Theropoda) from the Late Cretaceous of Mongolia. Acta Palaeontol Pol 44:189–219Google Scholar
  4. Clark JM, Norell MA, Rowe T (2002) Cranial anatomy of Citipati osmolskae (Theropoda, Oviraptorosauria), and a reinterpretation of the holotype of Oviraptor philoceratops. Am Mus Novit 3364:1–24CrossRefGoogle Scholar
  5. Currie PJ (1995) New information on the anatomy and relationships of Dromaeosaurus albertensis (Dinosauria: Theropoda). J Vertebr Paleontol 15:576–591CrossRefGoogle Scholar
  6. Currie PJ, Zhao X-J (1993) A new troodontid (Dinosauria, Theropoda) braincase from the Dinosaur Park Formation (Campanian) of Alberta. Can J Earth Sci 30:2231–2247Google Scholar
  7. Dooling RJ, Ryals BM (1997) Auditory perception and plasticity in the avian auditory system. J Acoust Soc Am 101:3191CrossRefGoogle Scholar
  8. Freye-Zumpfe H (1953) Befunde im Mittelohr der Vögel. Wiss Z Martin-Luther-Univ Halle-Witten 2:445–461Google Scholar
  9. Henson OW (1974) Comparative anatomy of the middle ear. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology, vol V. Springer, Berlin Heidelberg New York, pp 39–110Google Scholar
  10. Hill KG, Lewis DB, Hutchings ME, Coles RB (1980) Directional hearing in the Japanese Quail (Coturnix japonica). I. Acoustic properties of the auditory system. J Exp Biol 86:135–151Google Scholar
  11. Ji Q, Currie PJ, Norell MA, Ji S-A (1998). Two feathered dinosaurs from northeastern China. Nature 393:753–761CrossRefGoogle Scholar
  12. Kühne R, Lewis B (1985) External and middle ears. In: King AS, McLelland J (eds) Form and function in birds, vol 3. Academic, New York, pp 227–271Google Scholar
  13. Kundrát M (2007) Avian-like attributes of a virtual brain model of the oviraptorid theropod Conhoraptor gracilis. Naturwissenschaften 94:499–504Google Scholar
  14. Larsen ON, Dooling RJ, Michelsen A (2006) The role of pressure difference reception in the directional hearing of budgerigars (Melopsittacus undulatus). J Comp Physiol A 192(10):1063–1072CrossRefGoogle Scholar
  15. Larsen ON, Dooling RJ, Ryals BM (1996) Roles of intracranial air pressure in bird audition. In: Lewis ER, Miller GR (eds) Diversity in auditory mechanics. World Scientific, Singapore, pp 11–17Google Scholar
  16. Lewis DB (1983) Directional cues for auditory localisation. In: Lewis DB (ed) Bioacoustics. Academic, London, pp 233–257Google Scholar
  17. Makovicky PJ, Norell MA (1998) A partial ornithomimid braincase from Ukhaa Tolgod (Upper Cretaceous, Mongolia). Am Mus Novit 3247:1–16Google Scholar
  18. Makovicky PJ, Norell MA, Clark JM, Rowe T (2003) Osteology and relationships of Byronosaurus jaffei (Theropoda: Troodontidae). Am Mus Novit 3402:1–32CrossRefGoogle Scholar
  19. Norberg RÅ (1978) Skull asymmetry, ear structure and function, and auditory localization in Tengmalm’s owl, Aegolius funereus (Linné). Philos Trans R Soc Lond B 282:325–410CrossRefGoogle Scholar
  20. Norell MA, Clark JM, Turner AH, Makovicky PJ, Barsbold R, Rowe T (2006) A new dromaeosaurid theropod from Ukhaa Tolgod (Ömnögov, Mongolia). Am Mus Novit 3545:1–51CrossRefGoogle Scholar
  21. Norell MA, Makovicky PJ, Clark JM (2004) The braincase of Velociraptor. In: Currie PJ, Koppelhaus EB, Shugar MA, Wright JL (eds) Feathered dragons: studies on the transition from dinosaurs to birds (life of the past). Indiana University Press, Bloomington, pp 133–143Google Scholar
  22. Osmólska H (1976) New light on the skull anatomy and systematic position of Oviraptor philoceratops. Nature 262:683–684CrossRefGoogle Scholar
  23. Payne RS (1971) Acoustic location of prey by barn owls (Tyto alba). J Exp Biol 54:535–573PubMedGoogle Scholar
  24. Rauhut OW (2004) Braincase structure of the Middle Jurassic theropod dinosaur Piatnitzkysaurus. Can J Earth Sci 41:1109–1122CrossRefGoogle Scholar
  25. Saiff EI (1988) The anatomy of the middle ear of the tinamiformes. J Morphol 196:107–116CrossRefGoogle Scholar
  26. Saunders JC, Johnstone BM (1972) A comparative analysis of middle ear function in non-mammalian vertebrates. Acta Oto Laryngol 73:353–361Google Scholar
  27. Schwartzkopff J (1952) Untersuchungen über die Arbeitsweise des Mittelohres und das Richtunshören der Singvögel unter Verwendung von Cochlea-Potentialen. Z Vgl Physiol 32:319–327CrossRefGoogle Scholar
  28. Smith DK (1993) The type specimen of Oviraptor philoceratops, a theropod dinosaur from the Upper Cretaceous of Mongolia. Neues Jharb Geol Paläontol Abh 186:365–388Google Scholar
  29. Starck JM (1995) Comparative anatomy of the external and the middle ear of palaeognathous birds. In: Beck F, Galveston WH, Kriz W, Pauly JE, Sano Y, Schlieber TH (eds) Advances in anatomy embryology and cell biology, vol 131. Springer, Berlin Heidelberg New York, pp 1–137Google Scholar
  30. Stellbogen E (1930) Über das äussere und mittlere Ohr des Waldkauzes (Syrnium aluco, L.). Z Morphol Ökol Tiere 19:686–731CrossRefGoogle Scholar
  31. Wada Y (1924) Beiträge zur vergleichenden Physiologie des Gehörorgans. Pflügers Arch Gesamte Physiol Menschen Tiere 202:46–49CrossRefGoogle Scholar
  32. Walker AD (1985) The braincase of Archaeopteryx. In: Hecht MK, Ostrom JH, Viohl G, Wellnhofer P (eds) The beginnings of birds. Freunde des Jura-Museums, Eichstätt, pp 123–134Google Scholar
  33. Witmer LM (1990) The craniofacial air sac system of Mesozoic birds (Aves). Zool J Linn Soc 100:327–378Google Scholar
  34. Witmer LM (1997) Craniofacial air sinus system. In: Currie PJ, Padian K (eds) Encyclopedia of dinosaurs. Academic, San Diego, pp 151–159Google Scholar
  35. Xu X, Norell MA, Wang X-L, Makovicky P, Wu X-C (2002) A basal troodontid from the Early Cretaceous of China. Nature 415:780–784PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Redpath Museum-Biology DepartmentMcGill UniversityMontrealCanada
  2. 2.Institute of PhysiologyThe Academy of Sciences of the Czech RepublicPrague 4Czech Republic

Personalised recommendations