, Volume 94, Issue 9, pp 741–747 | Cite as

An acanthocephalan parasite increases the salinity tolerance of the freshwater amphipod Gammarus roeseli (Crustacea: Gammaridae)

  • Christophe Piscart
  • Dennis Webb
  • Jean Nicolas Beisel
Original Paper


Studies of the influence of parasites on host fitness generally conclude that parasites have a strong negative effect on their hosts. In this study, we have investigated experimentally the role of Polymorphus minutus, an acanthocephalan parasite, on the salinity tolerance of the freshwater amphipod Gammarus roeseli, one of its intermediate hosts. Unexpectedly, P. minutus-infected gammarids were more tolerant to salinity stress than uninfected ones. The mean lethal salt concentrations for 50% mortality of hosts tested were 17.3 (infected) and 9.7 g/L (uninfected). The parasitic load (one or two parasites per host) did not affect the result. The size of hosts had no significant influence on the salinity tolerance of either infected or uninfected gammarids. The mobility of all types of gammarid decreased when the salinity exceeded 9.0 g/L, but there was no significant difference between infected and uninfected gammarids. We discuss the higher salinity tolerance of infected amphipods in relation to O2 consumption and osmoregulation. Finally, we demonstrate that the salinity tolerance is enhanced in the parasitized amphipod but without a significant change in behavior or an osmoregulatory adjustment.


Polymorphus minutus Parasitism Acanthocephala Behavior ATPase activity 



We thank Vincent Médoc (Université de Metz) for his help in gammarid sampling, Loïc Bollache (Université de Bourgogne) for the acanthocephalan parasite identification, and Philippe Rousselle (Université de Metz) for the computer software used in the behavioral study of gammarids. We thank three anonymous referees and the managing editor for their helpful comments. This study was supported by the French Ministry of Ecology and Sustainable Development as part of the 2003–2005 Biological Invasions program. We also declare that our experiments are in conformity with French laws.


  1. Bakker TCM, Mazzi D, Zala S (1997) Parasite-induced changes in behaviour and color make Gammarus pulex more prone to fish predation. Ecology 78:1098–1104Google Scholar
  2. Bauer A, Trouvé S, Grégoire A, Bollache L, Cézilly F (2000) Differential influence of Pomphorhynchus laevis (Acanthocephala) on the behaviour of native and invader gammarid species. Int J Parasitol 30:1453–1457PubMedCrossRefGoogle Scholar
  3. Bauer A, Haine ER, Perrot-Minnot MJ, Rigaud T (2005) The acanthocephalan parasite Polymorphus minutus alters the geotactic and clinging behaviours of two sympatric amphipod hosts: the native Gammarus pulex and the invasive Gammarus roeseli. J Zool 267:39–43CrossRefGoogle Scholar
  4. Bentley CR, Hurd H (1993) Pomphorhynchus laevis (Acanthocephala): elevation of haemolymph protein concentrations in the intermediate host, Gammarus pulex (Crustacea: Amphipoda). Parasitology 107:193–198Google Scholar
  5. Bollache L, Gambade G, Cézilly F (2001) The effects of two acanthocephalan parasites, Pomphorhynchus laevis and Polymorphus minutus, on pairing success in male Gammarus pulex (Crustacea: Amphipoda). Behav Ecol Sociobiol 49:296–303CrossRefGoogle Scholar
  6. Bollache L, Rigaud T, Cézilly F (2002) Effects of two acanthocephalan parasites on the fecundity and pairing status of female Gammarus pulex (Crustacea: Amphipoda). J Invert Pathol 79:102–110CrossRefGoogle Scholar
  7. Brooks SJ, Mills CL (2006) Gill Na+, K+-ATPase in a series of hyper-regulating gammarid amphipods. Enzyme characterisation and the effects of salinity acclimation. Comp Biochem Physiol A 144:24–32CrossRefGoogle Scholar
  8. Burks RL, Lodge DM (2002) Cued in: advances and opportunities in freshwater chemical ecology. J Chem Ecol 28:1901–1917PubMedCrossRefGoogle Scholar
  9. Carlton JT (1985) Transoceanic and interoceanic dispersal of coastal marine organisms: the biology of ballast water. Oceanogr Mar Biol 23:313–371Google Scholar
  10. Cézilly F, Grégoire A, Bertin A (2000) Conflict between co-occurring manipulative parasites? An experimental study of the joint influence of two acanthocephalan parasites on the behaviour of Gammarus pulex. Parasitology 120:625–630PubMedCrossRefGoogle Scholar
  11. Crompton DWT, Nickol BB (1985) Biology of the Acanthocephala. Cambridge Univ. Press, Cambridge, UKGoogle Scholar
  12. Devin S, Beisel JN (2007) Biological and ecological characteristics of invasive species: a gammarid study. Biological Invasions 9:13–24CrossRefGoogle Scholar
  13. Gaillard M, Juillet C, Perrot-Minnot MJ (2004) Carotenoids of two amphipod species (Gammarus pulex and G. roeseli) and their common acanthocephalan parasite Polymorphus minutus. Comp Biochem Physiol A 139:129–136CrossRefGoogle Scholar
  14. Holliday CW (1985) Salinity-induced changes in gill Na, K-ATPase activity in the mud fiddler crab, Uca pugnax. J Exp Biol 233:199–208Google Scholar
  15. Jordan PJ, Deaton LE (1999) Osmotic regulation and salinity tolerance in the freshwater snail Pomacea bridgesi and the freshwater clam Lampsilis teres. Comp Biochem Physiol A 122:199–205Google Scholar
  16. Kefford BJ, Papas PJ, Nugegoda D (2003) Relative salinity tolerance of macroinvertebrates from the Barwon River, Victoria, Australia. Mar Freshw Res 54:755–765CrossRefGoogle Scholar
  17. Lafferty KD (1999) The evolution of trophic transmission. Parasitol Today 15:111–115PubMedCrossRefGoogle Scholar
  18. Lafferty KD, Morris AK (1996) Altered behavior of parasitized killifish increases susceptibility to predation by bird final hosts. Ecology 77:1390–1397CrossRefGoogle Scholar
  19. Lee CE, Bell MA (1999) Causes and consequences of recent freshwater invasions by saltwater animals. Trends Ecol Evol 17:284–288CrossRefGoogle Scholar
  20. Locke A, Reid DM, Van Leeuwen HC, Sprules WG, Carlton JT (1993) Ballast water exchange as a means of controlling dispersal of freshwater organisms by ships. Can J Fish Aquat Sci 50:2086–2093CrossRefGoogle Scholar
  21. Lukascovics F (1959) A Polymorphus minutus lárva hatása a Gammarus roeseli Gerv. (Amphipoda) fajna. Ann Inst Biol (Tihany) Hung Acad Sci 26:31–39Google Scholar
  22. MacNeil C, Dick JTA, Hatcher MJ, Dunn AD (2003) Differential drift and parasitism in invading and native Gammarus spp. (Crustacea: Amphipoda). Ecography 26:467–473CrossRefGoogle Scholar
  23. McCahon CP, Poulton MJ (1991) Lethal and sublethal effects of acid, aluminium and lime on Gammarus pulex during repeated simulated episodes in a Welsh stream. Freshw Biol 25:169–178CrossRefGoogle Scholar
  24. McCahon CP, Poulton MJ, Thomas PC, Xu Q, Pascoe D, Turner C (1991) Lethal and sublethal toxicity of field simulated farm waste episodes to several freshwater invertebrate species. Water Res 25:661–671CrossRefGoogle Scholar
  25. Médoc V, Bollache L, Beisel JN (2006) Host manipulation of a freshwater crustacean (Gammarus roeseli) by an acanthocephalan parasite (Polymorphus minutus) in a biological invasion context. Int J Parasitol 36:1351–1358PubMedCrossRefGoogle Scholar
  26. Milinski M, Bakker TCM (1990) Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature 344:330–333CrossRefGoogle Scholar
  27. Mills CL, Brooks LJ (2003) Acanthocephalan parasite infection exerts a controlling influence on osmoregulation in the freshwater amphipod Gammarus pulex. Comp Biochem Physiol A 134(Suppl 1):S23Google Scholar
  28. Moore J (1983) Responses of an avian predator and its isopod prey to an acanthocephalan parasite. Ecology 64:1000–1015CrossRefGoogle Scholar
  29. Niimi AJ, Reid DM (2003) Low salinity residual ballast discharge and exotic species introductions to the North American Great Lakes. Mar Pollut Bull 46:1334–1340PubMedCrossRefGoogle Scholar
  30. Patrick ML, Bradley TJ (2000) The physiology of salinity tolerance in larvae of two species of culex mosquitoes: the role of compatible solutes. J Exp Biol 203:821–830PubMedGoogle Scholar
  31. Péqueux A (1995) Osmotic regulation. J Crustac Biol 15:1–60CrossRefGoogle Scholar
  32. Piscart C (2004) Rôle de la salinité dans la dynamique et la régulation des communautés de macroinvertébrés dulçaquicoles. Thesis, Université de Metz, Metz, FranceGoogle Scholar
  33. Piscart C, Lecerf A, Usseglio-Polatera P, Moreteau JC, Beisel JN (2005a) Biodiversity patterns along a salinity gradient: the case of net-spinning caddisflies. Biodivers Conserv 14:2235–2249CrossRefGoogle Scholar
  34. Piscart C, Moreteau JC, Beisel JN (2005b) Biodiversity and structure of macroinvertebrate communities along a small permanent salinity gradient (Meurthe River, France). Hydrobiologia 551:227–236CrossRefGoogle Scholar
  35. Plaistow SJ, Troussard JP, Cézilly F (2001) The effect of the acanthocephalan parasite Pomphorhynchus laevis on the lipid and glycogen content of its intermediate host Gammarus pulex. Int J Parasitol 31:346–351PubMedCrossRefGoogle Scholar
  36. Poulin R (1995) “Adaptative” changes in the behaviour of parasitized animals: a critical review. Int J Parasitol 25:1371–1383PubMedCrossRefGoogle Scholar
  37. Prenter J, MacNeil C, Dick JTA, Riddell GE, Dunn AM (2004) Lethal and sublethal toxicity of ammonia to native, invasive, and parasitised freshwater amphipods. Water Res 38:2847–2850PubMedCrossRefGoogle Scholar
  38. Read AF (1990) Parasites and the evolution of host sexual behaviour. In: Barnard CJ, Behnke JM (eds) Parasitism and host behaviour. Taylor & Francis, London, UK, pp 117–157Google Scholar
  39. Rigaud T, Moret Y (2003) Differential phenoloxidase activity between native and invasive gammarids infected by local acanthocephalans: differential immunosuppression? Parasitology 127:571–577PubMedCrossRefGoogle Scholar
  40. Rumpus AE, Kennedy CR (1974) The effect of the acanthocephalan Pomphorhynchus laevis upon the respiration of its intermediate host, Gammarus pulex. Parasitology 68:271–284PubMedGoogle Scholar
  41. Smith LD, Wonham MJ, McCann LD, Ruiz GM, Hines AH, Carlton JT (1999) Invasion pressure to a ballast-flooded estuary and an assessment of inoculant survival. Biological Invasions 14:443–489Google Scholar
  42. Williams CM, Poulin R, Sinclair J (2004) Increased haemolymph osmolality suggests a new route for behavioural manipulation of Talorchestia quoyana (Amphipoda: Talitridae) by its mermithid parasite. Funct Ecol 18:685–691CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Christophe Piscart
    • 1
  • Dennis Webb
    • 2
  • Jean Nicolas Beisel
    • 3
  1. 1.Centre National de la Recherche Scientifique—Unité Mixte de Recherche (UMR 6553), Ecosystème Biodiversité et EvolutionUniversité de Rennes 1—Campus BeaulieuRennes CedexFrance
  2. 2.Université de Rennes1—Campus BeaulieuRennes CedexFrance
  3. 3.Centre National de la Recherche Scientifique, Laboratoire des Interactions Ecotoxicologie Biodiversité et Evolution (UMR 7146)Université Paul Verlaine-Metz, Campus BridouxMetzFrance

Personalised recommendations