Naturwissenschaften

, Volume 94, Issue 8, pp 675–680

Caps and gaps: a computer model for studies on brood incubation strategies in honeybees (Apis mellifera carnica)

Short Communication

Abstract

In addition to heat production on the comb surface, honeybee workers frequently visit open cells (“gaps”) that are scattered throughout the sealed brood area, and enter them to incubate adjacent brood cells. We examined the efficiency of this heating strategy under different environmental conditions and for gap proportions from 0 to 50%. For gap proportions from 4 to 10%, which are common to healthy colonies, we find a significant reduction in the incubation time per brood cell to maintain the correct temperature. The savings make up 18 to 37% of the time, which would be required for this task in completely sealed brood areas without any gaps. For unnatural high proportions of gaps (>20%), which may be the result of inbreeding or indicate a poor condition of the colony, brood nest thermoregulation becomes less efficient, and the incubation time per brood cell has to increase to maintain breeding temperature. Although the presence of gaps is not essential to maintain an optimal brood nest temperature, a small number of gaps make heating more economical by reducing the time and energy that must be spent on this vital task. As the benefit depends on the availability, spatial distribution and usage of gaps by the bees, further studies need to show the extent to which these results apply to real colonies.

Keywords

Honeybee Apis mellifera Brood nest Brood gaps Thermoregulation Multi-agent based computer simulation 

References

  1. Bujok B, Kleinhenz M, Fuchs S, Tautz J (2002) Hot spots in the bee hive. Naturwissenschaften 89:299–301PubMedCrossRefGoogle Scholar
  2. Camazine S (1991) Self-organizing pattern formation on the combs of honey bee colonies. Behav Ecol Sociobiol 28:61–76CrossRefGoogle Scholar
  3. Esch H (1960) Über die Körpertemperaturen und den Wärmehaushalt von Apis mellifica. Z Vgl Physiol 43:305–335CrossRefGoogle Scholar
  4. Fehler M, Klügl F, Puppe F (2004) Techniques for analysis and calibration of multi-agent simulations. In: Gleizes M, Omicini A, Zambonelli F (eds) LNAI 3451/2005. Springer, Berlin Heidelberg New York, pp 305–321Google Scholar
  5. Fehler M, Klügl F, Puppe F (2006) Approaches for solving the dilemma between structure refinement and parameter calibration in agent-based simulation. Proc AAMAS 2006, ACM, pp 120–122Google Scholar
  6. Fukuda H, Sakagami SF (1968) Worker brood survival in honeybees. Res Popul Ecol 10:31–39CrossRefGoogle Scholar
  7. Groh C, Tautz J, Rössler W (2004) Synaptic organization in the adult honey bee brain is influenced by brood-temperature control during pupal development. Proc Natl Acad Sci USA 101:4268–4273PubMedCrossRefGoogle Scholar
  8. Holm E (1997) Die Veredelung von Bienen: Genetik und die Zucht der Honigbiene, 7th edn. Ehrenwirth, MünchenGoogle Scholar
  9. Kleinhenz M, Bujok B, Fuchs S, Tautz J (2003) Hot bees in empty broodnest cells: heating from within. J Exp Biol 206:4217–4231PubMedCrossRefGoogle Scholar
  10. Klügl F, Herrler R, Fehler M (2006) SeSAm: implementation of agent-based simulation using visual programming. Proc AAMAS 2006, ACM, pp 1439–1440Google Scholar
  11. Leuenberger F (1974) Der Schweizerische Bienenvater. Lehrbuch der Bienenzucht, 15th edn. Verlag Sauerländer, AarauGoogle Scholar
  12. Montgomery D (1997) Design and analysis of experiments, 4th edn. Wiley, New YorkGoogle Scholar
  13. Oechslein C (2004) Vorgehensmodell mit integrierter Spezifikations- und Implementierungssprache für Multiagentensimulationen. Dissertation Uni-Würzburg, Shaker Verlag, AachenGoogle Scholar
  14. Park OW (1946) Activities of honeybees. In: Grout RA (ed) The hive and the honeybee. Dadant & Sons, Hamilton, IL, pp 125–206Google Scholar
  15. Ruttner F (1996) Zuchttechnik und Zuchtauswahl bei der Biene. 7th edn. Ehrenwirth, MunichGoogle Scholar
  16. Santomauro G, Oldham NJ, Boland W, Engels W (2004) Cannibalism of diploid drone larvae in the honey bee (Apis mellifera) is released by odd pattern of cuticular substances. J Apic Res 43:69–74Google Scholar
  17. Schmaranzer S, Stabentheiner A, Heran H (1988) Wissenschaftlicher Film: Thermografie bei Bienen. Mitt Dtsch Ges Allg Angew Entomol 6:136–139Google Scholar
  18. Southwick EE, Heldmaier G (1987) Temperature control in honey bee colonies. Bioscience 37:395–399CrossRefGoogle Scholar
  19. Tautz J, Maier S, Groh C, Roessler W, Brockmann A (2003) Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development. Proc Natl Acad Sci USA 100:7343–7347PubMedCrossRefGoogle Scholar
  20. Winston ML, Dropkin JA, Taylor OR (1981) Demography and life history characteristics of two honey bee races (Apis mellifera). Oecologia 48:407–413CrossRefGoogle Scholar
  21. Woyke J (1984) Exploitation of comb cells for brood rearing in honeybee colonies with larvae of different survival rates. Apidologie 15:123–136Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department for Artificial Intelligence and Applied Computer ScienceWürzburgGermany
  2. 2.BEEgroupBiozentrum der Universität WürzburgWürzburgGermany

Personalised recommendations